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ABSTRACT. A turning point in the history of mathematics was Cantor’s dis-
covery that infinite sets exist. Some time after this discovery, when the founda-
tional axioms for all of mathematics—the ZFC Axioms—were being developed,
Cantor’s discovery took the form of a fundamental axiom, now known as the
Axiom of Infinity. This axiom expresses Cantor’s discovery with extreme econ-
omy, asserting nothing more than that the natural numbers 1,2,3,... can be
collected together to form a single set (an infinite set). Because of this eco-
nomical formulation, the Axiom of Infinity provides little intuition about the
nature of “mathematical infinity.” Lacking a sufficiently clear idea about the
nature of the infinite, mathematicians have floundered as they have attempted
to come to grips with very strong and unusual forms of the infinite, known now
as large cardinals, which have emerged in research in the past century. These
notions of the infinite cannot be proved to correspond to “real” infinite objects
in the mathematical universe, but nevertheless seem quite real. A question
for which there is, to this day, no universally accepted answer, is, Do large
cardinals exist?

In this article, we suggest a new form of the Axiom of Infinity, which pro-
vides much richer intuition about the mathematical infinite, and which points
the way toward an account of large cardinals. This new axiom is based on a
deep insight about the true nature of the infinite. This insight is drawn both
from the ancient wisdom of several traditions of knowledge, concerning the
origin of the natural numbers, and also from the paradigm provided by quan-
tum field theory for understanding the ultimate constituents of the physical
universe. Both perpectives suggest to us that a collection of discrete objects,
like the set of natural numbers, should be understood as precipitations of the
dynamics of an unbounded field. What is important about the set of natu-
ral numbers, therefore, is the field that gives rise to them. In this spirit, we
show that the sequence of natural numbers “arises from” the transformational
dynamics of a Dedekind self-map. We show that a deep understanding of
Dedekind self-maps suggests that large cardinals themselves arise as “precipi-
tations” of Dedekind self-maps. Following this logic to its natural conclusion,
we conclude that, mathematically speaking, “everything” arises from “unman-
ifest” transformational dynamics that move the totality of the universe within
itself.

Parts of this paper were presented as a talk The Aziom of Infinity, QFT, and large cardinals
at the Boise State Set Theory Extravaganza, at University of San Diego, June 16, 2016 and at
the MUM Faculty Research Seminar, April 26, 2013, at Maharishi University of Management,
Fairfield, Iowa. This extended version provides more of the technical details alluded to in the
original version, published here: International Journal of Mathematics and Consciousness, Vol 2,
No 1, 2016, pp. 1-207.
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1. INTRODUCTION

The set N = {0,1,2,3,...} of natural numbers' has always been recognized
as playing a vital role in the development of mathematics. Nineteenth-century
German mathematician Leopold Kronecker made the often-quoted statement [71],
“God made natural numbers; all else is the work of man.” Certainly, the natural
numbers are the starting point for the construction of all the other number systems
that are used, including the integers, rational numbers, real numbers, and complex
numbers. Before formal foundational theories were developed, many believed that
the natural numbers were the basis for all of mathematics.

At the end of the 19th century, the mathematics community was confronted with
a bold conjecture by a young mathematician, Georg Cantor, who proposed that
the natural numbers can be collected together to form a set, a single mathematical
object. The unquestioned view of nearly all mathematicians of that period was that
the natural numbers 1,2, 3, ... extend as far as one cares to go, forming a potential
infinity, but that it was beyond human conception, and perhaps even sacrilegious,
to think of them as forming an actual infinity, a completed set. One reason had to
do with apparent paradoxes that seemed to arise from treating N as a set. Galileo
observed that if we look at the squares of the natural numbers, 1,4,9,16, ..., they
can be placed in 1-1 corresondence with the natural numbers (matching 1 with 1, 2
with 4, and, in general, n with n?). This correspondence would suggest that N (as
a set) has the same size as the set of squares of natural numbers. To Galileo, and
most other mathematicians of those early days, this conclusion was absurd—how
could the squares be equinumerous with the natural numbers when infinitely many
natural numbers are missing from the list of squares? Another issue was theological:
The “infinite” in mathematics was linked to beliefs about God. But once we allow
N to be a set, it is possible to perform operations on it that would violate treasured
religious beliefs. One such operation, also observed by Cantor, was the power set
operation P: For any set X, P(X) denotes the set of all subsets of X. Cantor
showed that the size of P(X) is always greater than the size of X. But then, P(N)
must be a bigger infinity than that represented by N, so from the point of view of
the theologies of the time, an entity greater than God was being professed.

Despite these and other strong objections, a compelling practical argument led
to eventual acceptance of this new point of view. During that period, there was
considerable confusion about how to build a rigorous foundation for analysis, which
includes in its fold the subject of calculus as well as more advanced areas of research.
The difficulty boiled down to the fact that there was no clear conception of how to
define a real number so that the main theorems of the subject could be proven rig-
orously. Cantor and others showed that, without actually infinite sets, there would
be little hope of solving the problem. Eventually, the mainstream mathematical
community agreed.

Some years after Cantor’s triumph, the world of mathematics faced another
crisis: The somewhat loose definition of “set” that had been used by Cantor, which
said, roughly speaking, that any collection of objects one could imagine could be

In this article, when we speak of the natural numbers in a historical context, we will refer to

them, as was done in earlier times, as a list 1,2,3,..., with 0 omitted. Outside of that context,
we adhere to the modern convention that the natural numbers form a set, which includes 0.
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collected together to form a set, led to paradoxes—inconsistencies in the foundation
of mathematics.

This second crisis led to the development of a formal set of axioms, intended to
provide a foundation for all of mathematics, known as ZFC' the Zermelo-Fraenkel
axioms of set theory, including the Axiom of Choice.

ZFC set theory was a great success. Mathematics now had a single foundation
that unified all branches of mathematics. Yet, behind the scenes, another challenge
was emerging—a challenge that would not be resolved in Cantor’s lifetime, and
that in fact remains unresolved to this day. Early set theorists, notably Hausdorff,
discovered new notions of infinity that were unexpectedly strong. Cantor’s work
showed that there is an endless hierarchy of infinite sizes, called infinite cardinals.
Using notation for these that is common today, the list of these infinite cardinals
begins like this:

(1) W0, W1, W2, v vy Wes Wit Ty v v vy Wag v v

Usually, wp is simply written w. The cardinal w is the size (or cardinality) of the
set N of natural numbers. The symbol ‘w’ is also used as another name for N; in
that case, w is often called the set of finite ordinals.?

Early set theorists identified properties that some cardinals had and that others
did not. For instance, some cardinals have the property of being regular: A regular
cardinal A\ has the property that, for any set X having size A, it is not possible to
write X as the union of fewer than A of its subsets, each having size A\. The cardinal
w is regular (no infinite set can be obtained as a union of finitely many of its finite
subsets), but w,, is not: If X has size w,,, for each n, X has a subset X,, of size w,
and X = Unew X,. So X is the union of fewer than w, of its subsets, each of size
less than w,,.

Early set theorists, working as if in a laboratory to combine infinite cardinal
properties to see what could be produced, found that if the property of regularity
was combined with the property of being a fized point,® one obtains a cardinal that
is much bigger than anything that can be built up from below, using any kind of
set operations.

Many years later, the logician Kurt Goédel showed that it is impossible to prove
from ZFC set theory that regular fixed points exist, though he did not prove that
such a cardinal could not exist.

Regular fixed points were the first example in the history of mathematics of a
large cardinal. Large cardinals are “large” because there is no way to arrive at
one of these infinite cardinals with operations that can be formalized in ZFC—so
if a large cardinal is postulated to exist, it must be much bigger than any of the
accessible cardinals used in ordinary mathematics.

Historically, what has made large cardinals problematic is that they cannot sim-
ply be ignored. They have played a key role in the solutions to research problems

2The concepts of ordinal and cardinal numbers are defined formally on p. 97.

3A cardinal wg is a fixed point if & = wq. This property is not found to hold for any of the
cardinals that occur early in the list (1), since 0 # wg,1 # w1,2 # wa,.... But fixed points do
exist. The smallest one is defined recursively as follows: Let fo = wo and define fr4+1 = wy, .
Then the cardinal obtained by forming the union fo U f; U... U fp U... is the least fixed point.
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in many areas of pure mathematics, including analysis, algebra, functional analysis,
and topology (see [16]).

Given that large cardinals over time have proven themselves to be vital to the
mathematical enterprise, it has become evident that the axioms of ZFC need to be
expanded” in order to provide a foundation for these exotic mathematical entities.
But how is this to be accomplished? Which axiom or axioms should be added? And
which large cardinals, among the many that have been discovered, really ought to be
derivable? These are questions that form a part of the Problem of Large Cardinals,
which has no generally agreed upon solution even to this day [44].

A natural place to look for some clue about a solution is in the axioms of ZFC.
We can examine all the axioms that talk about infinite sets and try to extract from
them a clear intuition about the nature of “infinite sets”—an intuition that could
suggest why large cardinals are in reality quite natural. This effort could lead to
the kinds of new axioms that need to be added to ZFC and to resolve the Problem
of Large Cardinals.

As it happens, the only axiom among the ZFC axioms that talks about infinite
sets is Cantor’s legacy: the one that says that the natural numbers form a set.
Stated in another way, this Axiom of Infinity states that “an infinite set exists.”
Looking closely at the formal statement, one discovers that the axiom provides very
little intuition that could be used to understand bigger infinities.

In this paper, we will propose an alternative version of the Axiom of Infinity,
one that is rich in intuition about the nature of the infinite, but that has the same
mathematical content as the current axiom. We will arrive at this new axiom by
looking to the ancient perspectives on the subject of infinity. We will see that, in all
the traditions we consider, the natural numbers are seen to emerge from a source,
and that they, in some way, remain “connected” to their source in their emergence.

We will attempt to formulate a mathematical version of these ancient insights.
In the process, we will observe that, for entirely different reasons, modern physics,
in particular, quantum field theory, successfully tackled a similar challenge, in the
discovery that the underlying reality of particles in the physical universe is the
dynamics of unbounded quantum fields.

Incorporating all of these points, we will formulate a New Axiom of Infinity that
captures the idea that the discrete quantities that constitute the set N of natural
numbers arise as “precipitations” of an underlying, unbounded field. In particular
we will show how the dynamics of this field, as it interacts with a distinguished point
within it called its critical point, generate a blueprint from which the sequence of
natural numbers may be formally derived.

Using the dynamics suggested by our new axiom, we will conjecture that large
cardinals arise in the same basic way as the natural numbers, by way of analogous
underlying dynamics. We will study generalizations of our axiom that are naturally
suggested, and that accord with more elaborated insights from the ancient wisdom.
In the end, we will formulate a new axiom, the Wholeness Axiom, motivated by
the intuition suggested by our New Axiom of Infinity, which accounts for virtually
all large cardinals, and which, in fact, gives an account of the emergence of all
mathematical objects.

4See for example [44].
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2. THE NATURAL NUMBERS ACCORDING TO ANCIENT WISDOM

In this section, we consider viewpoints about the natural numbers from several
ancient traditions of knowledge. We will see that the ancients had a more expanded
view of what the natural numbers are, where they come from, and what their role
is in the unfoldment of the universe.

We first consider the Vedic tradition, represented here by the teachings of Maharishi
Mahesh Yogi, which we will refer to as Maharishi Vedic Science.> One point in
Maharishi’s approach that stands out immediately is that the emergence of “diver-
sity” is always on the ground of unity, and that as parts emerge from the whole,
they remain connected to the whole, so that unity is never lost [48]:

All fields of creation are the diverse projections of self-referral con-
sciousness, and, as they always maintain connectedness with their
source, the entire field of diversity is the field of consciousness. That
is why self-referral consciousness administering itself means the en-
tire universe is administered by consciousness (p. 18).

This general principle of unfoldment is quite different from the usual way we
conceive of the unfoldment of the natural numbers: Natural numbers are not con-
sidered to emerge from any kind of source, and they are conceived of as distinct
quantities, not unified in any way. This usual way of understanding the natural
numbers represents a second way, which Maharishi has discussed, by which diver-
sification may occur. Maharishi explains that, although remaining connected to
the source is a natural occurrence in the process of diversification from the field of
pure consciousness, it is nevertheless possible for diversity to dominate the process
of unfoldment to such an extent that connection to the source is lost. This loss of
connection is called in the Vedic Literature pragya-aparadh.® Quantum physicist
John Hagelin describes the emergence of pragya-aparadh in this way [27]:

Hence the notion of diversity disconnected from unity is a funda-
mental misconception. This misconception is known as pragya-
aparadh or “mistake of the intellect.” Pragya-aparadh results when,
in the mechanics of creation from the field of consciousness, the in-
tellect loses sight of the essential unity which is the true nature of
the self .... The intellect gets caught up in its own creation, i.e.,
gets overshadowed by the perception of diversity to the exclusion of
the unity which is the actual nature of the self being discriminated.
According to Maharishi, this mistake of the intellect is so funda-
mental to the nature of human experience that it is responsible for
all problems and suffering in life (p. 284).

5Maharishi Vedic Science is Maharishi Mahesh Yogi’s systematic presentation, both theoretical
and practical, of the Veda and Vedic Literature. An introduction to Maharishi Vedic Science can
be found in [7].

6Maharishi [49, p. 287] also characterizes this loss of connection as ignorance, and characterizes
it further in the following remark [47, pp. 200-1]: “When the connectedness of individual life with
Cosmic Life is damaged, individual intelligence remains disconnected from its own cosmic value.
It remains like a bud without flowering.”
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Maharishi expresses a similar point, that, in the usual treatment of the natural
numbers, there is no mention of a “source” of natural numbers, and diversity dom-
inates. However, viewed in the right way, he explains, the natural numbers are the
basis of the unfoldment of the universe itself, so it is important that an account
of the natural numbers does not overlook their source, which he calls the Absolute
Number [45]:

The ever-expanding value of the universe, in terms of an infinity
of numbers, is the natural characteristic feature of the Absolute
Number, which enables all numbers to function from their common

basis (pp. 614-615).

According to Maharishi, failing to appreciate the unfoldment of the natural num-
bers in terms of their source—in terms of the Absolute Number—Ileads to an aware-
ness dominated by diversity” and dominated by the intellect, without support from
the source of either one. In [45], Maharishi describes this limited value of awareness
as the “intellectual level of logic,” and as “limited to the mathematics of the nat-
ural numbers.” He mentions this point in describing the ancient classic dialogues®
between the great warrior Vishwamitra and the fully enlightened sage Vasishtha,
in which Vishwamitra time and again fails to understand the ways of Vasishtha
because of his reliance on the intellect alone [45]:

This means that Vishwamitra was trying to understand the infinite
world of wholeness (the Sarmhita® level of reality) on the level of his
fully awake intellect, which was held on the intellectual level of logic
(limited to the mathematics of the natural numbers 1,2, 3, ...), and
therefore could not fathom the depth of wholeness that transcends
all numbers and is the common source of all numbers—the Absolute
Number (p. 613).

By restoring to awareness the true source of the natural numbers, he says [45,
p. 614], the boundaries that, in an intellect-based approach, keep these numbers
strictly disconnected from their source, begin to melt. Each number can then play
its role in contributing to the evolution of the universe. Moreover:

Its [each number’s] individual status has become Cosmic—as an
individual, it has been elected to be a ruler—the full potential of
its creativity has blossomed (p. 614).

Restoring to the natural numbers their source—the Absolute Number—has pro-
found consequences for the entire field of manifest life. Maharishi [45] says, “It
is this effect of the Absolute Number on all numbers that actually initiates and
maintains order in the ever-evolving infinite diversity of the universe” (p. 615). In-
deed, bringing individual awareness to its source in the Absolute Number leads to
a problem-free life (p. 615).

Certainly the view that Maharishi warns against here—that the natural numbers
are nothing more than conceptual devices, without a common source, only to serve
the practical need of counting items in the world around us—is the common view,

"See [46, p. 399].

8These dialogs can be found in Valmiki Ramayan, for instance 1.53.
9In other words, the totally unified level of reality.
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the view that one learns in school, and a view that one would ordinarily have little
occasion to reflect upon or call into question.

Yet, if we take seriously the view that the natural numbers have far greater
significance than the common view suggests, it is reasonable to wonder how these
numbers would be any different if they were to realize their “full potential.” One
answer comes from several observations Maharishi has made regarding the greater
signficance of these numbers, indicating that the true nature of each is more of
a universal principle than merely a discrete quantity. For instance, he describes
the number 1 as unity, an eternal continuum [45, p. 613], from which all the other
natural numbers emerge. He has described the number 2 as the view of wholeness in
which wholeness assumes the role of subject and object, infinite silence and infinite
dynamism, intelligence and existence, Purusha and Prakriti [45, p. 630]. He has
described the number 3 as the fundamental structure of unity, in terms of Rishi,
Devata, and Chhandas [45, p. 630]. In these examples we see that each number has
its own character but at the same time gives expression to, and remains connected
to, fullness.

Moreover, in his discussion about his Vedic Mathematics, Maharishi suggests that
the natural numbers, rather than being of a fundamentally finite nature, emerge as
a result of one infinity being “broken into pieces of infinity” [45, p. 572]. In fact,
Mabharishi locates the Sutra in the Vedic Literature that is responsible for breaking
the infinite in this way [45, p. 347]:

Eka cha me tisraschcha me . ..
One is in me, two is in me, etc.

- Yajur-Veda 18.24

Oneisinme

.. Two is in me

.@- .- Three is in me

FI1GURE 1. One Appearing as Two, Three, ...

From this perspective, the numbers 1,2, 3, ... are different ways of conceiving
unity, always remaining unified, always remaining the totality. In Figure 1, we see

8
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how a single line segment can also be viewed equally well as partitioned into two
pieces, or into three pieces, but in each case, no matter how many segments are
conceived, the original line segment remains unchanged.

It is this more expanded view of the nature of the natural numbers, it would seem,
that makes it possible for them to truly give rise to everything in the universe.

The view that the natural numbers have a deeper, universal significance has been
expressed in other ancient traditions of knowledge. In the West, Pythagoras and
his school maintained that all things in the universe are, fundamentally, natural
numbers. “All is number” is an expression attributed to this school.!’ Pythagoras
also maintained [20, p. 137] that at the basis of all natural numbers is a “Number
of numbers,” an ultimate source of all numbers, something Divine in nature.

The Neoplatonist Diadochus Proclus!! (412-485 A.D.), one of the most prolific
and profound among the Neoplatonists, also described an ultimate source of number
[65]:

... but the cause of all things being unically raised above all motion
and division, has established about itself a divine number, and has
united it to its own simplicity (p. 177).

Like Maharishi, Proclus maintains that diversification that emerges from the One
naturally remains connected to its source:'2

... that which comes into being, when separated from the cause, is
powerless and weak. For, since it is unable to preserve itself and is
not maintained by itself, but both the preservation and maintenance
are obtained from the cause and are removed if it is deprived of
the cause, it is plain that on its own it becomes powerless, and is
dispersed into nonexistence. . .

We find similar insights in ancient Chinese philosophy. Here, we also find the
view that diversity of manifest existence, embodied in the diversity of the natural
numbers, originates from a unified source to which all diversity remains connected.
I Ching scholar Carol Anthony [1] writes:

The ancient Chinese, like the ancient Greek Pythagoras, saw num-
bers as mirroring the order of the universe. The number one rep-
resented the undifferentiated whole.... Within this whole existed
two primary forces, called the Creative and the Receptive. .. that by
interacting with each other brought about the creation of all things
(p- 1).
The source of all number, as explained by Laozi in the ancient classic, the Tao Te
Ching, is the nameless Tao [23]:

The Tao begot One.
One begot Two.

10A discussion of the Pythagorean school can be found in [6, Part I].

1 “Neoplatonism” refers to the revival of Plato’s teachings and the Platonic Academy for a 300-
year period—roughly from 200 A.D. through 529 A.D.—after which the Academy was officially
closed. Proclus was the head of the Platonic Academy for nearly fifty years, succeeding Syrianus
in 437 A.D. The title “Diadochus,” which means “successor,” was bestowed upon Proclus when
he replaced Syrianus in the Academy.

12Quotation from [40, p. 103].
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Two begot Three.
And Three begot the ten thousand things (v. 42).

Here, Laozi tells us not only that Tao is the source of all things, but, he suggests, if
we look more closely, Tao is in fact the source of One (and Two and Three), which
in turn gives rise to all things.

The insight that the parts emerging in this diversification remain connected to
their source is expressed in the following passage [23]:

The beginning of the universe is the mother of all things.
Knowing the mother, one also knows the sons.

Knowing the sons, yet remaining in touch with the mother, brings
freedom from the fear of death (v. 52).

Tao is therefore seen to play a role similar to that of Maharishi’s Absolute Number.

3. THE ORIGIN OF N ACCORDING TO MODERN MATHEMATICS

It is natural to wonder to what extent the common view of the natural numbers
is truly the mathematical view. All mathematics arises from set theory, so we can
look to the axioms of set theory to see to what extent the commonly held restricted
view of the natural numbers is present even in the foundation of mathematics.

Among the axioms of ZFC'? (Zermelo-Fraenkel set theory with the Axiom of
Choice), there is just one axiom that talks about infinite sets; this axiom is called

131 this paper, we will often switch between the theories ZFC and ZFC without the Axiom of
Infinity: ZFC — Infinity. In the latter case, the theory that actually is needed is ZFC — Infinity +
Trans, where Trans is an axiom that asserts that every set is contained as a subset of a transitive
set (a set X is transitive if, whenever y € X, y C X). Including this axiom is preferable here
because of work in [22] where it is shown that the axioms of ZFC — Infinity + —Infinity + Trans
(where —Infinity says that infinite sets do mot exist) are essentially equivalent to the axioms of
arithmetic (in the form of the formal axioms of Peano Arithmetic (PA)). This equivalence will
allow us to switch between the set theory perspective and the PA perspective as needed.

Therefore, in this paper we simply assume that Trans is one of the standard axioms of ZFC.
With this assumption, ZFC — Infinity automatically also includes Trans. For reference, we list

our version of the ZFC axioms here. A functional formula is a formula ¢(z,y, 21, . . ., 25 ) with the
property that, for any sets a1, ..., ax, whenever ¢,u1, ug are sets and both ¢(t,u1,a1,...,ax) and
o(t,uz,a1,...,ax) hold, then u; = ug.

(Empty Set) There is a set with no element.

(Aziom of Infinity) There is an inductive set.

(Aziom of Extensionality) Two sets are equal if and only if they have the same
elements.

(Pairing Aziom) For any sets z,y, the collection {z,y} is also a set. More
precisely, for all z,y, there is z such that the only elements of z are z and y.
(Union Aziom) The union of any set of sets is again a set. More precisely, for
all x, there is z such that z = Uz.

(Power Set Aziom) The collection of all subsets of a set is again a set. More
precisely, for all z, there is z such that, for all u, u € z if and only if u C z.
(Foundation) Every set has an €-minimal element. In other words, for every z,
there is y such that for all z € y, z € x.

(Separation) For every formula ¢(z,z1,...,2x), every set A, and all sets
ai,...,ay, the collection {y € A| ¢(y,a1,...,ax)} is a set.

(Replacement) For any functional formula ¢(z,y, z1,...,25), any set A, and
any sets a1, ..., ak, the collection {v | Ju € A¢(u,v,a1,...,ax)} is a set.
(Choice) For any set X of nonempty sets, there is another set Y containing an

10
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the Aziom of Infinity. Historically, this axiom was considered to be essential because
of the work of Cantor, who showed that a rigorous formulation of a number system
as fundamental as the real number line would not be possible without the concept
of infinite sets [28]—in particular, it is necessary to conceive of the natural numbers
0,1,2,3,... as elements of a single, completed set, which we denote in this paper,
informally by N, and formally by the Greek letter w.

In coming up with a precise statement of the Axiom of Infinity, the early founders
of set theory had to decide how to express the idea that “an infinite set exists” or
“there is a set whose elements are the natural numbers” in the language of set
theory. In the language of set theory, everything is taken to be a set, but at the
time the axioms were being formulated, the natural numbers themselves were not
usually thought of in this way. To meet the need of representing natural numbers
as sets and asserting that there is a set that contains all natural numbers, the early
crafters of the axioms settled on the concept of an inductive set [32, 35].

Therefore, the Axiom of Infinity as it is known today asserts the existence of an
inductive set. A set S is inductive if it satisfies two properties: (1) S contains the
empty set (), and (2) for any set x belonging to S, the set s(x) = xU{z} also belongs
to S. The natural numbers are then defined to be precisely those sets that belong
to all inductive sets. This definition established w, the set of natural numbers, as
the smallest inductive set. This approach to the natural numbers provides a formal
way of declaring that the natural numbers have the following definition:

0 0
1 = {0}
2 = {0,1}
3 = {0,1,2)
n+1 = s(n)=nuU{n}=1{0,1,2,...,n}

The function s is fundamental to the definition of the natural numbers; it tells
us how to go from any number in the sequence to the next number in the sequence.
The usual way of defining s is by s(n) = n + 1—simply add ‘1’ to n to get the next
number in the sequence. But in the context of pure sets, this definition becomes
s(z) =2 U{z}.1

element of each of the elements of X.
(Trans) For every set X there is a transitive set Y such that X C Y.
Note that including the Empty Set Axiom in ZFC is redundant, but it is necessary when considering
the theory ZFC — Infinity.
L4Note that s, acting on any input z, has the effect of producing a new set zU{z} that includes
all elements of x together with one additional element, x itself. It should be observed that the
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Viewing the natural numbers in this way—as simply the sets 0, {0}, {0, {0}},.. .,
or even as the “smallest inductive set” —provides no clue that there might be, even
within the field of mathematics itself, an origin to the natural numbers; that the
natural numbers might reasonably be seen as emerging from some source—a source
that could be considered a mathematical analogue to Maharishi’s Absolute Num-
ber.1®

4. A PLAN FOR A NEW AXIOM OF INFINITY

We will argue that failure to recognize a suitable origin of the natural numbers
has resulted in an unnecessarily limited view of the nature of the mathematical
infinite. One of the ongoing problems in foundations of mathematics has been to
discover axioms that could be added to the ZFC axioms to provide an axiomatic
foundation for certain extremely large sets that have arisen in mathematical prac-
tice, known as large cardinals.'® A natural place to look for answers to questions
about the “infinite” in mathematics (such as “Which, if any, large cardinals exist—
that is, which should be taken as valid objects in the universe of mathematics?”)
is the Axiom of Infinity. As we have seen, however, the Axiom of Infinity tells us
little more than that an infinite set exists, and that, in particular, there is a set w
consisting precisely of the set-versions of the natural numbers. And, although it can
be shown that w does have some properties which are suggestive of large cardinals,
the definition of w itself reveals very little about the “nature of the infinite,” and
the Axiom of Infinity itself provides little help in determining which sorts of notions
of infinity really belong in the universe.

Our aim, then, is to provide a richer form of the Axiom of Infinity which, though
mathematically equivalent to the version that is in common use today, will have a

set U {z} always consists of one more set than z itself because z and {z} are disjoint. They
are disjoint because, in the universe of sets, no set is a member of itself—it is never the case that
T e x.

150ne might argue that the empty set () could play the role of the “source” of natural numbers.
Certainly, @) is the first in this sequence of numbers. But it is difficult to support the claim that the
numbers that come after 0 emerge from dynamics that are somehow contained in 0. In fact, from
what we have seen so far, such dynamics are embodied in the successor function s, rather than in
0 itself. In our view, s is a reasonable candidate for the “source” of natural numbers, except for
the fact that we are unable to specify the domain of s without already knowing about w.

6Cantor showed, at the end of the 19th century, that there are different sizes of infinite sets;
every infinite set has one of these sizes. But shortly after his discovery, certain types of infinite
sets emerged that were so enormous, they were very difficult to classify, and, years later, it was
shown that such infinities could not actually be proven to exist at all from ZFC. These notions
of infinity are known today as large cardinals. What is surprising about these large cardinals is
that they have appeared as key elements in the solutions of a wide range of research problems
in mathematics; moreover, despite concerted efforts by many early set theorists, no one has ever
proved that large cardinals do not exist. The so-called “Problem of Large Cardinals” is the problem
of adding to the standard axioms of ZFC one or more axioms that could be used to derive the
known large cardinals. The need here is to find naturally motivated axioms that could be truly
considered foundational axioms for mathematics, in the same spirit as the ZFC axioms themselves.
See [10, 11, 13]. One other aspect of the study of large cardinals that is also somewhat mysterious
is the fact that there is no generally agreed upon definition of “large cardinal”;in practice, though,
large cardinals have the property of being weakly inaccessible, so this property can be used as a
definition for our purposes here. See page 157 for a definition of weakly inaccessible.
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formulation that suggests a direction for generalizing, or “scaling.” To get started,
we consider the possibility that the natural numbers might indeed have a source,
as ancient philosophies have suggested, and that this source is something like the
“dynamics of an unbounded field.”

But the question remains, How can this intuition be implemented in a rigorous
mathematical way? Interestingly, modern physics has already taken a similar step
in a very different context.

One of the challenges in the history of physics has been to identify the ultimate
constituents of the physical universe. For centuries it was believed that the answer
had something to do with finding an ultimate particle, or fundamental set of par-
ticles, that everything else, including other particles, was made of. However, the
answer that was found was not a discovery about extraordinary particles. What
was found instead, by physicists in the area of Quantum Field Theory (QFT), was
that the source of all particles is unbounded quantum fields. Every particle has a
corresponding quantum field—for instance, each electron is related to the electron
quantum field. And, in fact, each electron is a precipitation of this quantum field.

This solution to the problem of finding what is at the “root” of physical reality
has been so successful that by now the physics community is in agreement that the
truth about particles is their underlying fields; the particles themselves are simply
side effects. Summarizing this insight, Art Hobson [31], in a 2013 American Journal
of Physics article, “There Are No Particles, There Are Only Fields,” writes,

Quantum foundations are still unsettled, with mixed effects on sci-
ence and society. By now it should be possible to obtain consensus
on at least one issue: Are the fundamental constituents fields or
particles? As this paper shows, experiment and theory imply that
unbounded fields, not bounded particles, are fundamental. ... Par-
ticles are epiphenomena arising from fields (p. 211).

In the QFT solution, a class of discrete particles are seen to be a side effect of
the dynamics of an underlying field. Considering the fact that the natural numbers
are, in a mathematical way, a discrete collection of quantities, we might conjecture
that they too are the expression of the dynamics of some sort of unbounded field.!”
We still wonder though, how can these dynamics be expressed mathematically?

A candidate to represent these dynamics has been known for a long time in
mathematics and precedes historically the formulation of the Axiom of Infinity that
we have today. This candidate is the concept of a Dedekind self-map, a special kind
of self-map j : A — A, for an arbitrary set A, having the following properties:

(1) j is 1-1: Different elements of A are sent by j to distinct elements.
(2) j has a critical point—an element a € A that is not in the range of j.18

The map j can be seen as a kind of “dynamics,” and, as can be proved, in order
for j to have properties (1) and (2), A must be unbounded, that is, infinite.

17Sooking to apply this QFT solution to account for a possible origin of the natural numbers
accords well with Maharishi’s perspective, mentioned earlier, since he sees the Absolute Number
as being itself a field [45]: “Incomplete mathematics, which is modern Mathematics, does not have
the insight into the Absolute Number—into the FIELD level of reality, from where all negativity
can be eliminated at one time, in one stroke (p. 633).”

1811 other words, there is an element a of A such that, for each z € A, j(z) # a.
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It can be shown that, on the basis of interaction between j and a, a precursor
or blueprint W of the set of natural numbers arises, and through another kind of
machinery, called the Mostowski collapse, W and j are “collapsed” to the standard
set w of natural numbers, together with its successor function s.

We propose, then, to “rewrite” the Axiom of Infinity to obtain the following:

There is a Dedekind self-map.

Though, as can be demonstrated, this new version adds no new mathematical con-
tent to the original Axiom of Infinity, it does suggest a direction for generalization,
for scaling to much bigger kinds of infinities, and to move toward a solution to the
Problem of Large Cardinals.

The intuition that the new axiom suggests is that, just as the natural numbers
themselves should, on the QFT view, be viewed as precipitations of an unbounded
field, realized mathematically as a Dedekind self-map interacting with its critical
point, so likewise should we expect large cardinals to arise as precipitations of some
larger-scale unbounded field, realized once again as the interaction of a generalized
Dedekind self-map with its critical point. Since large cardinals in many cases are
global,'® we conjecture that our generalized Dedekind self-maps will need to map the
universe V to itself. Therefore, justifying large cardinals should amount to finding
a natural kind of Dedekind self-map from V' to V', whose interaction with its critical
point ultimately gives rise to particular large cardinals.

There are many ways one might choose to rewrite the Axiom of Infinity to aim
for the goals we have described here. We have chosen to do it in a way that realizes
some of the vision of the ancients concerning the infinite. Our working hypothesis
in this paper is that the ancient vision uncovered deep truths about the nature and
dynamics of the Infinite that underlies the unfoldment of the universe, and that
the discoveries and insights of the sages of antiquity can be used as intuition to
successfully guide mathematical research into the infinite. Examining the ancient
view concerning the emergence of the natural numbers from the dynamics of an
unbounded source has already led us to the concept of a Dedekind self-map j : A —
A, which is a natural realization of this idea. Generalizing to Dedekind self-maps
of the form j : V — V, and envisioning that, by means of the interaction between
j and its critical point, the full nature of the mathematical infinite (including large
cardinals) could unfold, leads us even more deeply into the ancient view of the
unfoldment of manifest existence: On this larger scale, 7 : V' — V can now be seen
as an analogy for the fundamental dynamics of the source, of pure consciousness.?’

19Boing “global” means that they do not simply exist in isolation in some part of the universe;
but rather, their existence has an impact in arbitrarily large stages of the universe.
20we quote two descriptions from Maharishi of this underlying flow of life.
The infinite diversity and dynamism of creation is just the expression of the
eternally silent, self-referral, self-sufficient, unbounded field of consciousness—
pure wakefulness, unbounded alertness, pure intelligence, pure existence, all
knowingness [47, p. 67].

One individual is nothing but a bundle of waves, nothing but a bundle of energy
waves. Where do these waves come from, these waves of energy? They all
originate from that one eternal hum and that hum in its exact status is the
origin of the Vedas [52, p. 16].
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And those dynamics are seen to emerge from the interaction of j with its critical
point—and again, this view reflects the insight that the unfoldment of creation
begins with the collapse of unboundedness to a point and continues to emerge from
the point into infinite expansion.?!

The purpose of this article is to develop these ideas fully and arrive at a solution
to the Problem of Large Cardinals, at each step making use of the rich insights
about the Infinite available from the wisdom of the ancients.

5. DEDEKIND-INFINITE SETS AND DEDEKIND SELF-MAPS

In this section, we look more closely at the concept of a Dedekind self-map and
consider several examples. We will observe in some detail how the dynamics of such
a self-map give rise to a blueprint for the set of natural numbers. We also look at
a “higher order” Dedekind self-map, of type A4 — A4, and how it generates its
own kind of blueprint for w. We observe in this case a strong analogy between the
unfoldment of integer precursors and the sequential unfoldment of the Rk Veda, as
described by Maharishi’s Apaurusheya Bhashya.??

Among the many early definitions of “infinite set” that were considered as the
axioms of set theory were being formulated, a notion of infinity that did not rely
on the sequence of natural numbers was Dedekind-infinite sets, named after the
mathematician, Richard Dedekind, who proposed the idea. We state the formal
definition here:

Definition 1. (Dedekind-Infinite Sets) A set A is Dedekind-infinite if it can be
put in 1-1 correspondence with a proper subset?® of itself. In other words, A is
Dedekind-infinite if there is a 1-1 and onto function f : A — B where B is a proper
subset of A.

An easy example of a Dedekind-infinite set is A = {1, 2,3, ...}. Here, an example
of a proper subset B of A that can be put in 1-1 correspondence with A is given by
B ={2,3,4,...}, with correspondence given by f(n) =n + 1 (Figure 2).

Associated with every Dedekind-infinite set A is a corresponding self-map j :
A — A. For instance, if A is Dedekind-infinite and B C A is a proper subset, and
f A — Bisa 1-1 correspondence, the associated self-map j : A — A is defined
just to be f itself, except the codomain?? is changed from B to A. Now, since j
is a function from A to A, j is not itself a 1-1 correspondence: It is 1-1 but not
onto.?® Since j is not onto, there is an element a in the codomain of j that is not

21Maharishi gives an overview of this process here:
The first syllable of Rk Ved, AK, expresses the dynamics of akshara—the
‘kshara of A’ or collapse of infinity to its point value, which is the source of all
the mechanics of self-interaction [53, p. 1].

228ee [45, 495-505] for a definition and full discussion.

237 subset B of a set A is a proper subset if B # A.

24The codomain of a function h : C — D is D; one writes cod h = D.

25A function h : C — D is 1-1 if, whenever z,y are distinct elements of C, h(z),h(y) are
distinct elements of D. Also, h is onto if, for every d € D there is an « € C such that h(z) = d.
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FIGURE 2. Bijection from A to a Proper Subset B

in its range.?® Any such element @ that is in the codomain but not the range will
be called a critical point of j. We can now state our formal definition of Dedekind
self-map:

Definition 2. (Dedekind Self-Maps) A Dedekind self-map is a 1-1 function j : A —
A that has a critical point.

The diagram in Figure 3 shows an example of a Dedekind self-map with critical
point 1. Here, the function f : A — B of Figure 2 has been replaced by j: A — A,
but acts on elements of A in exactly the same way: For each n, j(n) = n+1. Notice
that the critical point of j has been circled.

The behavior of a Dedekind self-map j : A — A has the characteristic of preserv-
ing its own nature, in the following sense: First, the range of j, which we denote
B (as in the examples), is, like A itself, a Dedekind-infinite set, and second, the
restriction®” of j to B, denoted j | B, is also a Dedekind self-map, now with critical
point j(a).

We spend a moment to verify these details: Let B = j[A] = {j(x) | z € A} and
let i = j [ B. We show:

(a) i is a function from B to B.

(b) 4 is a Dedekind self-map.

(¢) B is Dedekind-infinite.
26The range of a function h : C — D is the set of all outputs of h: ranh = {h(z) | z € C}.
27The restriction i of a function h : S — T to a subset R of its domain S, denoted i = h | R,

has domain R and is defined by i(z) = h(z) for all z € R.
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F1GURE 3. Dedekind Self-Map A — A with Critical Point 1

For (a), if b € B, we can find = € A such that b = j(x). Since j(z) € A, we have
3(b) = 3(j(x)) € jlA] = B.

It follows that all values of ¢ lie in B, and (a) is established.

For (b), since i is a restriction of j, i is 1-1. We verify that j(a) is a critical point
of i: If i(b) = j(a) for some b € B, let x € A with b = j(x). Then i(j(z)) = j(a)
implies j(z) = a, which is impossible since a ¢ ranj. It follows therefore that
i=j|B:B— Bisa Dedekind self-map with critical point j(a).

For (c), since 4 is 1-1, it follows that ¢ : B — C = i[B] is a bijection; but since
jla) € C, C is a proper subset of B. It follows that B itself is Dedekind-infinite.

It is not difficult to carry the reasoning further and show that C'itself is Dedekind-
infinite and j [ C': C — C is another Dedekind self-map with critical point j(j(a)).
This reasoning leads to an infinite chain of Dedekind-infinite sets, Dedekind self-

maps, and a sequence of critical points a,j(a),j(j(a)),.... These dynamics are
pictured in Figure 4.
The reader will notice that the sequence a,j(a),j(j(a)),... closely resembles

the sequence of natural numbers. As we will show, it is correct to regard this
sequence as a precursor to the “real” natural numbers. Another sequence derived
from j, which also represents the natural numbers, but now more abstractly, is
ida,j,jo0j,jojoj,..., where idgy : A — A is the identity function (that is,
ida(xz) = z for all z € A).

From this perspective (which, at this point in the discussion, has not yet been
fully or rigorously developed) “natural numbers” a,j(a),j(j(a)),... seem to arise
as concrete “precipitations” from a self-referral flow (5 : A — A), originating from
the interaction between j and its critical point a. And, more abstractly, a subtler
version of the natural numbers, id4, j,j o j,..., arises simply from the interaction
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FIGURE 4. Transformational Dynamicsof j: A — A

of j with itself. With this subtler approach, each natural number is seen as a
self-referral loop.

A@ A@ A@
0 1 2

F1GURE 5. Natural Numbers 0,1, 2,... As Self-Referral Loops

In addition, the dynamics expressed by j have an important characteristic: While
j does in fact transform A (in the sense that j is not simply the identity function;
values of A are moved), j nevertheless preserves the essential character of A, namely,
that of being Dedekind-infinite, since, as we showed earlier, the image B of A under
7 is itself Dedekind-infinite.

These characteristics of a Dedekind self-map j : A — A are reminiscent of the
transformational dynamics of wholeness, as described in Maharishi Vedic Science,
from which the Veda, the blueprint of creation, emerges.?® In these dynamics, the

28Tor the reader who may be unacquainted with this aspect of Maharishi’s work, we offer a quick
summary here, and refer the reader to a full treatment of the topic by Maharishi in [45, 495-505].
The Veda describes, in one of its own verses (Rk Veda 1.164.39), how the Veda itself arises. The
verse states, “The verses of the Veda exist in the collapse of fullness (the kshara of 3 (A)) in the
transcendental field, in which reside all the Dewvas, the impulses of Creative Intelligence, the Laws
of Nature responsible for the whole manifest universe” [50, pp. 52-53]. Maharishi explains that this
collapse of fullness is represented by the very first syllable of Rk Veda, AK. In the syllable AK, the
letter ‘A’ represents fullness (pronounced without restriction in intonation), while ‘K’ represents a
stop, uttered with a closed throat. “The pronunciation of 3 (A) requires full opening of the mouth,
indicating that 21 (A) is the expression of the total value of speech. 3T (A) presents unbounded
totality, 3 (A) is the total potential of speech. Pronunciation of & (K) requires complete closing
of the channels of speech (the throat). 3T (A) fully opens the channels of speech; & (K) closes
the channels of speech. Full opening followed by full closing displays the phenomenon of collapse
of the unbounded field (of speech) to the point value (of speech). The whole range of speech is
contained in this collapse; all sounds are in this collapse, and all the mechanics of transformation
of one sound into the other are also contained in this collapse” [48, pp. 171, 354].
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first move of wholeness, of “A.” gives rise to a sequence of transformations from
“AK” to “Agni” to “Agnimile” to the first pada, first richa, first mandala, to the
entire Rk Veda [45, p. 636]. In these transformations, what is preserved is the
essential fullness of “A” even in its collapse to “K” (which Maharishi describes as
“fullness of emptiness”). The particulars of manifest existence, like the natural
numbers themselves, emerge as a side-effect of the unmanifest dynamics of whole-
ness. Moreover, Maharishi has described the ultimate nature of these particulars as
“self-referral loops” within pure consciousness [47]: “The evolution of consciousness
into its object-referral expressions, ever maintaining the memory of its self-referral
source—ever evolving structure of consciousness, maintaining the memory of its
source—progresses in self-referral loops—every step of progress is in terms of a
self-referral loop” (p. 64).

When we use the representation of the natural numbers given by id 4, j, joj, jojo
J,..., it is possible to see that each successive “natural number”—each successive
term of the sequence—is an elaboration of the previous term. This viewpoint is
expressed in the following diagrams, showing how the move to each successive term
elaborates the previous term.

Corresponding to the number 0, and by analogy, the first letter A of Rk Veda,
we have the identity map idy : A — A that does nothing; it represents complete
silence:

(2) A4 g

Corresponding to the number 1, and by analogy, the first syllable AK of Rk Veda,
we have the fundamental transformation given by a Dedekind self-map j : A — A,
including the “collapse” of A to the critical point a, as in diagram (3).

In diagram (3), f : A — B is a 1-1 correspondence from A to the proper subset
B of A, and inc : B — A is a function that behaves like the identity map, in that
inc(z) = z for all € B; the only difference between the identity map on B and
the function inc is that the codomain of inc is A rather than B. The function inc

Being the focal point of the collapse of the unbounded totality, ‘K’ represents a point of infinite
dynamism, all possibilities, that can burst forth into the diversity of creation. This “point value,”
as he explains elsewhere, is represented by ‘K’: “The total potential of 3T (A) is available between
the infinity of = (A) and its point & (K). The liveliness of the inner structure of 3T (A), the
liveliness of the Constitution of the Universe, is represented by & (Ak). & (K), the point of the
Constitution of the Universe, is the total Constitution of the Universe concentrated at the point
of WHOLENESS, =T (A)” [49, p. 454]. Therefore, the syllable AK, he says, embodies in seed form
the entire transformational dynamics of the unfoldment of the Veda, which in turn gives rise to
manifest life.
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is called the inclusion map from B to A.?° The diagram as a whole—known as
a commutative diagram—indicates that, following the behavior of the map across
the top, namely, j, produces the same result as following the two lower arrows: f
followed by inc, denoted inco f. Thus, for any x € A, the value of j(z) is the same
as inc(f(x)) (this is an easy verification).

The diagram shows that j is formed in two steps: The first step is the 1-1
correspondence between A and the set B, given by f; the second step is the assertion
that B itself is in fact a proper subset, expressed by the fact that inc(x) = z for
all z € B and that inc is not onto. In this diagram, the self-map j does something;
there is a critical point; elements of A are moved. Notice that j is a composition
of two factors with very different properties: j = inco f. The bijection f captures
the dynamic relationship between A and its subset B, whereas the inclusion map
inc: B — A is almost the same as id g—this map is completely silent as it does not
move any element of B. Whereas diagram (2) displays pure silence, diagram (3)
shows that this “collapse” of A to a arises from a map composed of both silence
and dynamism.

As a prelude to the diagram (5), we could re-draw diagram (3) in the following
way (diagram (4)):

A J A
(4) f inc
B idp B

This version of the diagram makes evident the fundamental pattern of unfoldment,
that will repeat as the sequence of compositions of j with itself proceeds: The
horizontal maps, as we scan the diagram from bottom to top, display the maps as
they unfold from id to j to j o j to j o j o j, and so on, whereas the vertical maps
display the relationships that connect each step to the next.

Corresponding to the number 2, and by analogy, to the fuller elaboration of AK
given by the first word of Rk Veda, Agnim, is the composition map j o j, pictured
in diagram (5).

A joJ A
(5) f inc
B ilB B

Recall that if j : A — A is a Dedekind self-map with critical point a and range
B, then j [ B: B — B is a Dedekind self-map with critical point j(a). Diagram (5)

293ometimes it is helpful, when specifying inclusion maps, to include the domain and codomain
as subscripts. In this example, we could write incg 4 in place of inc. We will adopt this notation
when needed.
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shows that the self-map j o j : A — A is obtained by first applying f, then j [ B,
and finally the inclusion map inc from B to A. One can view this suite of maps as
a further elaboration of j itself. The visual impact of the diagram itself suggests
that the previous diagram is being enlivened: The identity map idp : B — B in the
bottom row of the previous diagram is now replaced in the present diagram by the
Dedekind self-map j | B.

For our final example, the number 3, analogous to the next packet of expression
in the Veda—the first pada, consisting of 8 syllables—corresponds to jo jo j, shown
in diagram (6).

A _deici, 4
lj incp, A
(6) p @IBeGlB p
lf 5

c ile c

Recall that incp 4 : B — A is the inclusion map from B to A, while incc g is
the inclusion map from C to B. Diagram (6) illustrates the more fully elaborated
transformational dynamics as joj moves to jojoj. The dynamics seen in diagram (5)
are now recapitulated in the lower square of diagram (6) (replacing A with B and
B with (), but diagram (6) as a whole tells a fuller story about how j acts on
A in various ways. This makes the analogy to Maharishi’s Apaurusheya Bhashya
more clear: Successive elaborations recapitulate the expressions that have already
appeared but develops them further.

In this way, we see that the view that takes ida, j, joj, ... as the blueprint of the
natural numbers illustrates how the emergence of the natural numbers, at its foun-
dation, consists of successive elaborations of the dynamics inherent in j: A — A.

One final observation about this view of the natural numbers as arising from a
sequence of Dedekind self-maps is that this sequence itself originates from a higher-
order Dedekind self-map in the following way: Let j : A — A be a Dedekind
self-map with critical point a, and let A4 = {h | h is a self-map with domain A}.3°
Note that the identity map id4 : A — A is one of the elements of A*. Define a
self-map J; : A4 — A% by J;(h) = j o h. Notice that id, is not in the range of J;
and that J; is 1-1: For h, k € A4 we have

Jj(h) = Jj(k) = joh=jok=h=F,

since 1-1 functions are precisely the left-cancellable functions.

We have shown that J; : A4 — A4 is a Dedekind self-map with critical point
ida. Now we can observe that, in the same way as a, j(a), j(j(a)), ... are obtained
by repeated applications of j to its critical point a, so likewise id4, 7,50 7,... is
obtained by repeated applications of J; to its critical point id4. We will establish

301y general, if X, Y are sets, YX denotes the set of all maps from X to Y.
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in a moment the way in which both of these sequences can be considered blueprints
for the natural numbers in a more precise way.

6. A NEwW AXIOM OF INFINITY AND THE BLUEPRINT W

We have seen that the existence of a Dedekind self-map gives rise to a kind of
blueprint for the natural numbers, obtained by considering iterations of the map,
and we showed a couple of ways at arriving at such a blueprint. The power of a
Dedekind self-map to “precipitate” objects will generalize to a larger context and
allow us to provide a very natural account for the existence of large cardinals, as
we will see in later sections. Because of the importance of this generative power of
Dedekind self-maps, we invest some effort in developing the details of this process.
In this section, we set the stage for a somewhat long analysis, showing how the set
of natural numbers w = {0,1,2,...}, and the successor function s : w — w, are
formally (and not just intuitively) derivable from any Dedekind self-map.

We begin with our formal proposal for a new version of the Axiom of Infinity:

New Axiom of Infinity. There is a Dedekind self-map.

Notice how stating the Axiom of Infinity in this way really causes a shift in
viewpoint—a shift away from the idea that “infinite” means a vast collection of
discrete objects and towards the recognition that the reality of the “infinite” is
self-referral dynamics of an unbounded field. The discrete values that are usually
taken as the “reality” of infinite sets can now be seen as derivable side-effects of the
dynamics of this “field.”

It is well-known to set theorists3! that, from the ZFC axioms, minus the usual
Axiom of Infinity (the theory ZFC —Infinity), one can prove that the usual Axiom of
Infinity and the New Axiom of Infinity are equivalent; using this known equivalence,
we could then use the existence of an inductive set to demonstrate that the sequences
a,j(a),j(j(a)),...and ida,j,j 0 4, ..., described in the previous section, do indeed
form sets that each represent—in a sense that can be made precise—the set w of
natural numbers.

We do not wish to rely on this standard result, however. The usual proof either
already assumes w exists, or else uses a “proper class” version of the natural numbers
to then derive a “set” version of them.32

315ee for example [32, p. 97]. We also establish this result here; see Remark 6 on p. 24.

32For the interested reader, we briefly outline this approach here. We will work in a model®3 of
ZFC — Infinity and, because the axioms for arithmetic, PA (Peano Arithmetic), are interpretable
in that theory, it follows that one can refer to a (possibly proper) class of natural numbers for
V; we denote this class w. The usual notions of induction and inductive definition can be shown
to hold relative to @ in almost exactly the same way they hold for w even without the Axiom
of Infinity. Then, one can, given a Dedekind self-map j : A — A, define another class W =
{a,j(a),j(j(a)),...} in V by proceeding as follows: Define a class function F on @ by

FO) = a
Fin+1) = jF(n).
One may then define the class W by W =ranF. One then shows that W is in fact a set using

the Separation Axiom as follows:
W =ranF N A.
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This quick approach to defining the blueprint W = {a, j(a), j(j(a)),...}, and
then producing the actual set w of natural numbers, though mathematically sound,
is somewhat unsatisfying since it makes use of one version of the natural numbers
that does not require them to form a set in order to prove that they do form a set.
It is more revealing, we feel, to see how the dynamics of our Dedekind self-map
J give rise to the set of natural numbers without any reliance on the notion of a
natural number initially.

We will therefore take a somewhat longer journey®* than is usually done to
arrive at the natural numbers and to establish the equivalence of these two axioms
of infinity. We will use the following outline to guide our steps of reasoning:

(A) We will define the concept of a j-inductive subset of A and we will let W
denote the smallest j-inductive set. (In this step, we do not assume that
W contains the values a, j(a), j(j(a)), . . .; this will be proved later on.)

(B) We will define an order relation £ on W. Roughly speaking, we will say
that zey if and only if one can obtain y from x by applying j at most
fintely many times to z: y = §(j...(j(z))...). This will be done without
reliance on any notion of natural number. (Since the usual definition of
“finite” involves the natural numbers by definition, some cleverness will be
required.)

(C) We will show that € is a wellfounded partial order.®®

(D) Using slightly different methods from those used in (A)—(C), we will show
that E is a total order as well, so that in fact, £ is a well-ordering of .36

These four points will provide us with a blueprint W equipped with a natural well-
ordering, and will set the stage for the final step, in which we derive the concrete set
of natural numbers, and the canonical successor function, by way of the Mostowski
Collapsing Map. The details of this final step, which will be the subject of Section 8,
are essentially the same, regardless of how we arrive at W, whether we use the “fast”
approach mentioned above, or the longer approach that we will develop here.

Therefore the collection W = {a,j(a),j(j(a)),...} does indeed form a set, and one may derive
the canonical set w of natural numbers from W. The technique for collapsing W to the real set w
of natural numbers is worked out in Section 8.
Regarding this class W, after we have verified that the set of natural numbers can be derived
from a Dedekind self-map without the help of the natural numbers in any form, we will come back
to this class @, as it is extremely useful when working with models of ZFC — Infinity. A proper
development of the properties of w is given in Section 16.
34The reader who does not want to take this longer journey and is satisfied with the definition
of the blueprint W just described, which relies on a class of natural numbers, can skip to Section 8
where the set of natural numbers is computed.
35A relation R defined on a set X is a partial order if the following holds true for any z,y, z
in X:
(1) (Irreflexive) It is not the case that z Rz.
(2) (Antisymmetric) If Ry, then it is not the case that y Rx.
(3) (Transitive) If z Ry and y R z, then z R 2.

A definition of wellfounded partial order is given on p. 25.

367 partial order R on a set X is a total order (also called a linear order) if, for all z,y € X,
exactly one of the following holds: = < y, x =y, y < . A well-ordering of X is a total order R
with the additional property that every nonempty subset of X has an R-least element. One can
show as an exercise that every well-founded total order is a well-ordering.
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This derivation will show how the set w and the successor function arise as the
collapse of the set W = {a, j(a), j(j(a)),...} of the blueprint and of the restriction
j [W. The logic behind this derivation works because the ordering £ defined on
the blueprint W gives us a well-ordering of W that is isomorphic to the natural
well-ordering on w.

Remark 1. Once we have in this way derived w and s : w — w from any given
Dedekind self-map, we will have established the equivalence, in ZFC —Infinity, of the
Axiom of Infinity and the New Axiom of Infinity, since the other direction (Axiom
of Infinity implies New Axiom of Infinity) follows from the following observations:

(i) The Axiom of Infinity implies w and the successor function s : w — w exist,
and
(ii) The function s : w — w is itself a Dedekind self-map.

7. OBTAINING THE BLUEPRINT W

This section will complete the outline of steps (A)—(D), listed in the last section.
We begin by fixing, for this section, a Dedekind self-map j : A — A with critical
point a.

FEstablishing (A). We define the concept of a j-inductive set: A set B C A will be
called j-inductive if

(1) a € B,
(2) whenever z € B, j(z) is also in B.

Notice that A itself is j-inductive. Therefore, the set Z = {B C A | Bis
j-inductive} is nonempty. Let W = (Z.

Remark 2. For later reference, we observe here that W is definable from j and a.
Lemma 1. W is a j-inductive subset of A.

Proof. For (1), since a belongs to every j-inductive subset of A, a € W. For (2),
assume z € W. Then x belongs to every j-inductive subset of A. For each such
j-inductive subset B, since x € B, j(x) € B. Therefore j(z) € W. O

FEstablishing (B). As mentioned earlier, we wish to define an order relation £ on
W by declaring that, for all x,y € W, xzey if and only if y can be obtained by
finitely many applications of j to x: y = j(4(...(j(x))...)). The difficulty with
this definition in our present context is the word “finite,” since a set is ordinarily
defined to be finite if it can be put in 1-1 correspondence with one of the elements
n of w (recall that each such n is equal to its set {0,1,2,...,n— 1} of predecessors).

To get around this difficulty, we will reword our requirements on € so that no
mention of “finiteness” is necessary; the properties of the underlying structure W
will ensure in the background that the number of applications of j that actually
occur to reach from z to y whenever x ey will always be finite, but we will not
need to prove this or make this fact explicit at any point in this early stage of
development.
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In order to define E properly, we will first define a more elementary relation g,
on W: We shall say that, for all z,y € W, &,y if and ouly if y = j(x). We prove
some basic facts about j and Eo.

We define several concepts pertaining to relations. For any relation R on a set
X, an R-minimal element of X is an z € X such that for all y € X, it is not the
case that y Rx. Moreover, R is said to be wellfounded if every nonempty subset
Y of X has an R-minimal element. A familiar example is the set N = {1,2,3,...}
of natural numbers with its less than relation < (so here, R is simply <); < is
wellfounded as every nonempty subset of N has a smallest element. We will not
make use of this example here, of course, since the natural numbers have not yet
formally been defined; the example is intended just to give some concrete sense for
the new definitions.

Claim 1. j has no fixed points in W; that is, j(z) # « for all x € W. Consequently,
Eo is irreflexive.

Proof. The last part follows immediately from the fact that j has no fixed points.
We prove the first part: Suppose B C A is j-inductive and = € B is a fixed point of
j. We observe that B — {«} is also j-inductive: First, notice a # x since a & ran j
but x = j(x) € ranj. Therefore, a € B — {x}. Suppose y € B — {z}; we show
j(y) € B —{z}. Certainly j(y) € B since B is j-inductive. If j(y) = x, then since
j(x) = x too, we have j(x) = j(y), and since j is 1-1, x = y, which is impossible.
Therefore j(y) € B — {z}. We have shown B — {z} is j-inductive.

To prove the claim, suppose B C A is a j-inductive set that contains a fixed
point x of j. As we have seen, B — {z} is j-inductive, and by leastness of W,
W C B — {x}. Therefore B # W. This proves the claim. [J

Remark 3. An immediate consequence of Claim 1 is that a # j(a); this of course
also follows from the fact that a ¢ ranj. From the latter observation, we also
conclude that a # j(j(a)). And by j’s 1-1 property, j(a) # j(j(a)). Therefore,
a,j(a),j(j(a)) are distinct.

Claim 2. g, is wellfounded.

Proof. Suppose X C W is a subset having no ,-minimal element. Let B C W be
defined by

B={zeW|z¢ X}

We show that B is j-inductive and therefore equal to W; the conclusion will then
be that X itself is empty, as required.

First we show that a € B. If not, a € X, then there is a b € X such that bea;
that is, j(b) = a. But this is impossible since a ¢ ran j.

Next, assume x € B; we show j(z) € B. Assume for a contradiction that
j(x) ¢ B, so j(z) € X. Since X has no Eo-minimal element, there is v € X with
uEoj(x), that is, j(u) = j(z). Since j is 1-1, w = . But this is impossible because
u € X but x is not.

25



International Journal of Mathematics and Consciousness

This completes the proof that B is j-inductive and that W is empty. [
Claim 3. g, is antisymmetric.

Proof. Suppose z,y € W and zEoy. If y £,z also, then the set {z, y} is a nonempty
subset of W with no e-minimal element. [

The relation g, is a first try at defining a prototype of the less than relation on
the natural numbers. It has many of the characteristics that are needed, but it
is not transitive: Whenever x,y, z are distinct elements of W (by Remark 3, such
distinct elements exist in W) and we have x €,y and y €, z, it is never the case that
ZEo 2, since this would imply j(z) = z = j(y), which would in turn imply =z = y.

To obtain a transitive order relation, we will expand g, to a relation £ as follows:
Forall z,y € W, x ey if and only if there is a subset F' of W satisfying the following:

(i) z,y e F,
(ii) for some v € F, y = j(v),

(iii) there is no u € F for which z = j(u),

(iv) ifu € F and u # y, then j(u) € F,

(v) if v € F and v # x, there is u € F such that v = j(u).
The set F' is said to join = to y, and is called a joining set.

Intuitively speaking, z ey if and only if y = j™(z) for some natural number n.
Our formal definition of E is a way of capturing this idea without the use of natural
numbers. As this intuition suggests, any joining set F' must be finite, but we do
not state this in the definition, nor try to prove it (in fact, at this point, we do not
even have a definition of “finite”).37

FEstablishing (C).

We begin by proving some facts about e and joining sets.
Claim 4. g, C e. That is, whenever z,y € W and xE,y, then zEy.
Proof. Suppose Eqy, soy = j(x). Let F = {x,y}. We show F joins x to y. Parts
(1), (ii), (iv), (v) in the definition of £ are obviously true for F'. We prove that (iii)
also holds: We must verify that neither of the following holds: (a) j(z) = z, (b)

j(y) = z. (a) fails because j has no fixed points; (b) fails because E, is antisymmet-
ric. We have established (iii); the result follows. O

Claim 5. E is irreflexive.
Proof. Suppose z € W. If zex, let F join = to x. By part (ii) in the definition of

joining sets, there is v € F such that z = j(u), but by (iii), there is no u € F for
which = j(u). This contradiction shows that it is never the case that zez. O

37After the necessary preliminaries have been established, we will give the usual definition of
“finite” and prove in Theorem 24 that joining sets are indeed always finite.
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Claim 6. t is wellfounded.

Proof. We use the same strategy as was used in the proof of Claim 2. Suppose
X C W is a set with no e-minimal element. Let B = {z € W | z € X}. We show
B is j-inductive.

We first prove that a € B. Suppose, for a contradiction, that a € X. Since X
has no e-minimal element, there is € X with xea. Let F C X join x to a. Then
there is u € F such that j(u) = a. But this is impossible since a ¢ ran j.

Next, suppose x € B; we show j(z) € B. Suppose not; then j(z) € X and so for
some u € X, uej(z). Let F join u to j(x). By property (ii) of the definition of E,
there is some v € F' C X such that vE,j(x), that is, j(v) = j(x). Since j is 1-1,
v = z. But this is impossible since v € X but z is not. I

We extract an observation made in the proof of Claim 6:
Claim 7. For all x e W, zka. (I

Claim 8. E is anti-symmetric; that is, for all z,y € W, if xey then it is not the
case that yex.

Proof. Suppose z,y € W are such that zey and also yex. Then {z,y} has no
e-minimal element, contradicting Claim 6. [

Claim 9. For all x € W, if a # x, then aEx.

Proof. Let B={z€ W |a =z or aEz}. It suffices to show B is a j-inductive set.
Since it is obvious that a € B, it suffices to assume z € B and prove j(z) € B. If
a = z, then certainly a€ j(a), and so j(z) € B. If a # z, then, since z € B, we have
aEz. Let F join a to z. Let G = F U {j(z)}. We wish to show that G joins a to
j(z). We verify that G satisfies (i)—(v) above. Properties (i), (ii), (iv), and (v) are
immediate. For (iii), certainly no u € F has the property that uta, since F joins
a to z (note (iii) already holds for F'). But j(z)&a either because of Claim 7. We
have shown B is j-inductive, as required. [

Claim 10. Suppose z,y € W.

z ey if and only if j(x)Ej(y).

)

Suppose zEy and y # j(x). Then j(x)Ey.

Suppose € j(y) and x # y. Then zEy.

Suppose zEy. Then j(y) k.

If zEy, then zE j(y).

If j(x)Ey, then zEy.

If x # a, there is u € W such that j(u) = z. Moreover, there is no v € W
such that ueveax.
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(9) Suppose F joins x to y, u € F, and u # x. Then zE u.
(10) Suppose F joins x to y and w € F. Then y& u.
(11) Suppose F joins x to y, u € F, and u # y. Then uey.
(12) Suppose F joins x to y. Then F is connected; that is, whenever © € W and
TEUEY, then u € F.

Regarding part (8) of Claim 10, for a given x € W different from a, we will
call an element u € W for which j(u) = z an e-immediate predecessor of x, or,
when the context makes it clear, an immediate predecessor of x. Since j is 1-1,
if  has an immediate predecessor, it is unique. Part (8) says that every element
of W other than a has an immediate predecessor. The notion “immediate prede-
cessor” is to be distinguished from the unqualified “predecessor”: Whenever x Ey,
x is called a predecessor of y, but x is not necessarily the immediate predecessor of y.

Proof of (1). For one direction, suppose z £y and F joins x to y. It is straightfor-
ward to verify that if G = {j(u) € W | u € F}, then G joins j(z) to j(y). Likewise,
for the other direction, assuming j(x)€j(y) and G joins j(x) to j(y), one easily
verifies that ' = {u € W | j(u) € G} joins x to y.

Proof of (2). Let B = {x € W | zej(j(z))}. We show B is j-inductive. By
Claim 9, a € B. Assume z € B; we show j(z) € B. Since z € B, zej(j(z)). By
Claim 10(1), j(z)ej(j(j(x))). It follows that j(z) € B, as required.

Proof of (3). Suppose zey and y # j(x). Let F join z to y. Let G = F —{z}. By
(iv) in the definition of joining sets, j(x) € G. It is straightforward to verify that
G joins j(x) to y.

Proof of (4). Suppose z€j(y) and x # y. Let F join x to j(y). By (v) in the
definition of joining sets, there is u € F such that j(u) = j(y). Since jis 1-1, u =y,
soy € F. Let G=F —{j(y)}. It is straightforward to verify that G joins x to y.

Proof of (5). Fixx € W. Let B={y € W | if zey then j(y) x}. We show B is
j-inductive. Vacuously, a € B. Assume y € B; we show j(y) € B. Assume xE j(y).
We consider two cases: x =y or x # ¥.

If x = y, then by Claim 10(2), y£j(j(y)). Since E is antisymmetric, then
j(3(y)) &y. Therefore, in this case, j(y) € B.

Now assume z # y. By Claim 10(4), zey. If j(j(y)) €z, then, using Claim 10(2)
again, we have the following cycle:

J(y) exeyej(i(y)),

and the set {x,y,7(j(y))} has no e-minimal element, contradicting wellfoundedness
of W. Therefore, j(j(y)) &z and so j(y) € B in this case as well. This completes
the proof that B is j-inductive. We have shown therefore that for all z,y € W, if
xEy, then j(y) & x.
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Proof of (6). Suppose zEy. We show z€j(y). Let F join  to y. Let G =
FU{j(y)}. We show G joins z to j(y). Verification of (i),(ii), (iv), (v) in the def-
inition of € is straightforward. We check that (iii) holds: Suppose u € G; we must
show j(u) # x. Certainly j(u) # x if u € F (since F joins x to y). We consider
the case in which u = j(y). If j(j(y)) = =, then since j(y)Ej(j(y)), it follows that
j(y) Ex, and this contradicts (5). Therefore, in this case also, j(u) # x, and (iii) is
established. We have shown G joins z to j(y), and so z € j(y).

Proof of (7). Suppose j(xz)Ey. We show zey. Let F join j(z) to y and let
G = F U {z}. We show G joins = to y. Verification of (i),(ii), (iv), (v) in the
definition of € is straightforward. We check that (iii) holds: We must show that
j(u) # x for any x € G. First we observe that if u = j(z), j(u) # z: If j(j(x)) = =z,
then j(x)Ex, violating antisymmetric property of €. Next, suppose u € F' is such
that j(u)Ez. By Claim 10(6), j(u) € j(z), but this contradicts the fact that F' joins
j(x) to y (in particular, (iii) is violated). Therefore, no such u exists, and (iii) holds
for G as well. We have shown G joins = to y, and so zEy.

Proof of (8). For the first part, if 2 # a then, by Claim 9, a € x, and so there is an
F that joins a to x. By property (ii) in the definition of joining sets, there is u € F
such that j(u) = z, as required.

For the second part, assume, by way of contradiction, that there are u,v € W
with wEvEj(u). Since vE j(u), by Claim 10(4), either v = w or vEwu. But if v = u,
we would have uewu (violating Claim 5), and if vE u, it would violate the antisym-
metric property (violating Claim 8). Therefore, there does not exist a v € W for
which uEvE j(u).

Proof of (9). Suppose F joins z to y, u € F, and u # x. We show xEu. Let
B={ueW]|ifuée€ F and = # u, then xeu}. We show B is j-inductive. To show
a € B, there are three possibilities. If a ¢ F or if a € F and a = z, then a € B,
vacuously. The third possibility—that @ € F and a # xz—is impossible by (v) in
the definition of joining sets, since (v) implies there is z € F such that j(z) = a,
and this is impossible since a is a critical point of j.

Next, assume u € B; we show j(u) € B. Assume j(u) € F and x # j(u). There
are two cases: (i) x = w; (i)  # u. If x = u, then z € j(u), as required. If z # u,
then since v € B, zeu. It follows by Claim 10(6) that z€ j(u). In each case we
have shown that j(u) € B, and so B is j-inductive. The result follows.

Proof of (10). We show that whenever F joins z to y and u € F', then y&u. Let
B={ueW|ifueF,then ytu}. Since for no z € W is it true that zea, we
have that a € B. Assume u € B; we show j(u) € B. Assume j(u) € F; we show
y&j(u). There are two cases: (i) u ¢ F and (ii) u € F.

For (i), using the fact that v ¢ F, we claim that j(u) = x: Suppose not. Then
by (v) in the definition of joining sets, there must be v € F with j(v) = j(u). It
follows that u = v, which is impossible since v € F but u ¢ F. This proves the
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claim. But now, by antisymmetry of g, y & x (since x €y by our initial assumption),
and so j(u) € B.

For (ii), since u € B, it follows that y & u. If y £ j(u), then yew (by Claim 10(4)),
giving a contradiction. Therefore, y & j(u) and j(u) € B.

We have shown in each case that « € B implies j(u) € B, and so B is j-inductive.

Proof of (11). Suppose F joins x to y, u € F, and v # y. We show uEy.
Let B = {u € W | ifuéeF and y # u, then uey}. We show B is j-inductive.
Vacuously, a € B. Assume u € B; we show j(u) € B. Assume j(u) € F with
j(u) #y. We show j(u)€Ey. There are two cases: (i) v & F, (ii) u € F.

For (i), we use the logic in (10), case (i), to conclude that j(u) = x. But by
assumption = ey. We have shown j(u) € B in this case.

For (ii), since u € F, I claim we must have y # u: If y = u, then y&j(u), but,
since j(u) € F, this contradicts the result established in (10). Therefore y # wu.
Since u € B, uey. By Claim 10(3), because we are assuming j(u) # y, it follows
that j(u)€ey. Therefore, once again, j(u) € B.

We have shown j(u) € B in both cases. Therefore, B is j-inductive, as required.

Proof of (12). We show by j-induction that joining sets are always connected.
Let z € W. Let

B ={y € W | every F that joins x to y is connected }.

We prove B is j-inductive. Note that a € B since no set I joins x to a. Assume
y € B; we must show j(y) € B. There are two cases to consider:

Case I. xty. To show j(y) € B, we first consider the possibility that x = y. Let F
join y to j(y). By Claim 10(8), there is no v € W for which yevEe j(y). Therefore,
vacuously, F' is connected and j(y) € B.

The other possibility is that x # y. We show in this case that z & j(y): Assume
for a contradiction that 2 € j(y). Then by Claim 10(4), it follows that x €y, which is
impossible for this case. But now since = & j(y), j(y) € B (since there is no F' that

joins z to j(y)).

Case II. xey. Suppose F joins x to j(y) and v € W is such that zevE j(y); we
must show v € F. By Claim 10(4), either v =y or vEy. Suppose v = y. Recall by
the definition of joining set that there must be z € F with j(z) = j(y); but because
7 is 1-1, we conclude z = y. We have shown v € F.

The other possibility is that vey. Let Fy = F — {j(y)}. We show that Fj
joins x to y. By (ii) of the definition of joining set, it follows (as we argued a
moment ago) that y € F; therefore (i) in the definition of joining set is satisfied
for Fy. Because y € F, by (v) of this definition, it follows that for some ¢t € Fyp,
y = j(t), and (ii) is satisfied for Fy. Parts (iii)—(v) of the definition, relative to
Fy, follow immediately from the fact that F' itself is a joining set. We have shown
Fy joins z to y. Since y € B, it follows that Fy is connected. Since for this case
we have x EvEy, it follows that v € Fy. Therefore, v € F. We have shown j(y) € B.
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Continuing the main proof, we have shown B is j-inductive. Therefore, joining
sets are always connected. [

Claim 11. Suppose z,y, z € W are distinct. Then if F joins z to y and G joins y
to z, then F'U G joins = to z. In particular, € is transitive.

Proof. Verification of properties (i), (ii), (iv), (v) for FUG is straightforward. For
(iii), suppose u € F'U G is such that j(u) = z. Since F joins z to y, it follows that
u € G and u ¢ F. In particular, u # y. By Claim 10(9), yEu. By Claim 10(6),
yEj(u), and so yEx. But this violates the antisymmetric property of £ (since zEy
by assumption). Therefore, for no u € FUG is it the case that j(u) = z. Therefore,
we have established that all properties (i)—(v) hold for F'U G, as required. O

Theorem 2. (W,E) is a wellfounded partial order.
Proof. This follows from Claims 5, 6, 8, and 11. [J

Establishing (D).

We are now ready to show that e is a well-ordering. We will make use of the
following definition:

Definition 3. (Set of Predecessors) Suppose z € W. The set of predecessors of x,
denoted Wy, is defined by

Wy ={2€eW |zex}.
Lemma 3. Suppose z,y € W.
(1) Ify € Wy, then W, C W,.
(2) Suppose Wy € Wiy, but Wy £ W, Then W, = Wj(,).

Proof of (1). If zey, then since yEz, it follows from transitivity of € (Claim 11
above) that zex and z € W,. O

Proof of (2). By the hypotheses, the only element of W, that is not in W, is y.
Since yE x, it follows that each z for which z ey satisfies z ez (by transitivity of g),
and so we have both y € W, and W,, C W, that is, W, U {y} C W,. It follows
from Claim 10(4) above that W) € W,. Since we also have, by hypothesis, that
Wi € Wiy, the result follows. O

The next lemma3® shows that the relation E is extensional.

Lemma 4. (Extensionality) Suppose z,y € W.
(1) Suppose W, C W,. Then either x =y or zEy.
(2) Suppose Wy =W,. Then z =y.

Proof of (1). Suppose W, C W,. Assume z # y and x§y; we will arrive at a
contradiction. We first observe that « # a: If © = a, then a # y (since z # y). But
we also have agy (since z&y), and this contradicts Claim 9. By Claim 10(8), =

38na private communication, Martial Leroy pointed out the need for this lemma (and provided
a proof) as a preliminary to Lemma 5.
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has an immediate predecessor u and « = j(u). Then we have u € W, C W, and so
uty. By Claim 10(1), z = j(u)Ej(y). By Claim 10(4), either x = y or zEy, and
this contradicts our initial assumption. We have shown that either x =y or zey. O

Proof of (2). Suppose W, = W,. By part (1), both of the following disjunctions
hold:

(a) =y or zEY.
(b) y ==z or yEx.

By the irreflexive and antisymmetric properties of g, it follows that z = y. O

Lemma 5. Suppose x,y € W. Then either Wy, C W, or W, C W,.

Proof. Let x € W and let A, = {y € W | either W, C W, or W,, C W, }. We use
j-induction to show that A, = W, and this will complete the proof.

For the base case, it is clear that a € A, since W, =0 C W,.

Next, assume y € A, so that either W, C W, or W,, C W,.. We show j(y) € A,.

Case I. W, € W,,. In that case, since W, C Wj,, it follows that W, C Wj(,, and
we have j(y) € A,.

Case II. W, C W,. By Lemma 4(1), either y = z or yex. If y = x, then W, = W,
and we have (by Claim 10(4)): W, € W, C W, U {y} = Wj(,. If yex, then
Wiy = Wy U{y} € W,. Either way, we have shown that j(y) € A,.

We have shown that A, is j-inductive and is equal to W, as required. [

For the next theorem, let us say that two elements x,y of W are a decidable pair
if exactly one of the following holds:

(7) TEY, T =Y, YET.

Theorem 6. (E Is a Well-Ordering) Suppose z,y € W. Then z,y is a decidable
pair. Therefore, W is well-ordered by E.

Proof. We first observe that at most one of the three possibilities listed in dis-
play (7) can hold: If any two of the conditions hold, it would violate either the
irreflexive or the antisymmetric property of E.

Next, we establish a preliminary result:

Claim. For any z € W, any x,y that are both predecessors of z form a decidable
pair.
Proof of Claim. Let

B={zeW |forall z,y € W, if xEz and yE z, then z,y is a decidable pair}.

We show B is j-inductive.
First note that a € B, vacuously. Assume u € B. We show j(u) € B. Suppose
2Ej(u) and yE j(u). Then one of the following must be true:
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(a) zEu and yEu.

(b) zEu andy:u.
()
(d)

Ifx=wvwand y=wu,then x =y. If revwand y = v or x = v and yEwu, then x,y is
clearly a decidable pair. And if x£wu and yEu, then x,y is a decidable pair because
of the assumption that v € B. This completes the proof of the claim. [J

To prove the theorem, suppose x,y € W. We show z,y is a decidable pair.
Consider the set C' = W,y U Wj(,). Certainly, x € C and y € C. To complete the
proof, it will be sufficient to show there is z € W for which C' = W, since, having
shown this, we can conclude that x,y is a decidable pair because of the claim just
proved.

By Lemma 5, either Wjy € Wj(,) or W) € Wiy, and so Wy, U Wy, is
equal to one of Wy, Wj(,). Either way, C = W, for some z € W. This completes
the proof. [

A wuseful corollary that now follows from Theorem 6 and Claim 10(8) is the
following;:

Corollary 7. Let x € W. Then j(z) is the e-least element of {z € W | ze2z}. O

Therefore, we may list the elements of W by a€ej(a)Ej(j(a))E.... After we
define the natural numbers, we will be able to establish more formally that W =
{a,j(a),j(j(a)),...}.3? For future use, for each x € W, let W® = {z € W | ze2}.
Thus, for each z € W, W =W, U {z} UW?=.

For later use, we compute W, for a few values x € W:

Corollary 8.

(1) Wa =0.

(2) w. ;(a) = {a}.

(3) W, J(J(a)) {a,7(a)}.

(4) Wiy = {a,j(a),i(i(a))}.

Proof of (1). This follows from Claim 7.

Proof of (2). Recall that by Claim 10(4), if x€ j(a), either zEa or x = a. Thus,

Wj(a) = {x eWw | IEEj(CL)} = {a}.

Proof of (3). By Claim 10(4) again, if € j(j(a)), then either z€ j(a) or x = j(a),
and the only x satisfying the first of these is a itself. Therefore

WiGiay = {z € W[zej(i(a))} = {a, j(a)}-

39This is done in Theorem 21.
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Proof of (4). By Claim 10(4) again, if zej(j(j(a))), then either x€j(j(a)) or
x = j(j(a)). We have seen in (3) that the = for which z€j(j(a)) are a and j(a).
Therefore,

Wiy =z € W zej(i(i(a)} = {a,j(a),j((a))}. O

8. A DERIVATION OF w AND THE SUCCESSOR FUNCTION

The previous section, in establishing (A)—(D) of Section 6, demonstrated that
(W,E) is a well-ordered set. In this section, we introduce the Mostowski Collapsing
Map, which will be used to collapse (W, ) to (w, €), and to collapse j [ W : W — W
to the successor function s : w — w.

Before describing the Mostowski Collapsing Map, we need to introduce one other
concept. A set T is said to be transitive if, whenever z € T and y € z, we have
y € T. Transitive sets are the “well-behaved” sets in the universe. It is not hard to
verify that w = {0,1,2,...} is transitive, and that each of its elements is transitive.

We now define the Mostowski Collapsing Map © on W .49 The function m will
turn out to be a bijection and will have the effect of identifying W with a transitive
set N whose membership relation € behaves exactly like the relation e on W. The
Mostowski Collapsing Map will transform W and its internal relationships (specified
by E) into a concrete, well-behaved set, which lives in the early stages of the universe,
but which mirrors the relationships which hold in W under the relation . We will
demonstrate that 7 collapses the elements of W to corresponding elements of the
set w = {0,1,2,3,...}, and collapses W itself to w. From our initial assessment of
W, we would expect that a will be mapped to 0, j(a) to 1, j(j(a)) to 2, and so
forth; we will verify these expectations in our proof.

Theorem 9. (Mostowski Collapsing Theorem for W) There is a unique function
7 defined on W that satisfies the following relation, for every x € W:

(8) m(x) = {n(y) | yex}.

Proof. Let B C W be defined by putting z € B if and only if the formula ¥(2)
holds where v(z) is the formula Jlg ¢(z, g) and where “3!” means “there exists
exactly one” and ¢(z, g) is the following formula:

dom g = W, U{z} and, for all x € W, U {z}, g(x) = {g(y) | yex}.

Whenever there exists a g such that ¢(z, g), we say that g is a witness for ¥(z).
When such a g defined on W, U {z} exists, it will typically be denoted .

We will show that B is j-inductive, and then, from B, obtain the Mostowski
Collapsing map. We first observe that a € B: Since there is no y € W for which
yEa, {m.(y) | yEa} must be empty, no matter how m, is defined on “predecessors”
of a. Therefore, there is one and only one function 7, with domain W, U{a} = {a}
that satisfies m,(a) = {ma(y) | yEa}, and that is the function for which 7,(a) = 0.
We have shown that ¢ (a) holds, so a € B.

40This function can be defined more generally on any wellfounded, extensional relation defined
on a set.
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Now assume z € B and let 7, be the unique map defined on W, U {2z} that is a
witness for ¢(z). We prove j(z) € B. We define 7;(,) on Wj,) U {j(z)} by

() if zej(2),
Tj(z) () = . o
{m=(y) [yei(2)}  ifz=j(z).

Notice that if yEj(z), then either y = z or yez (by Claim 10(4)). Therefore,
defining 7;(.)(z) to be {7.(y) | y€j(2)} when x = j(2) makes sense. We verify that
Tj(z) is a witness for ¥(j(2)):

If x£j(2), then

Ti)(r) = m(x)
= A{m(y) [yex}
{mi)(w) |yex}.
The last line follows because, by definition of 7j.), 7;(,) agrees with 7. on all y for
which yEz (since z £ j(2)).
On the other hand, if x = j(z), then
mi(@) = {m(y) |yei(2)}
= {me® | yEiG)

Once again, by definition of 7;(.), 7;(;) agrees with 7. on y for which y € j(2), so
the second equality in the display follows from the first.

This shows that a witness 7;(;) for 1(j(z)) exists; we need to show it is unique.
Assume f is defined on W;(,) U {j(2)} is also a witness for ¥(j(2)); in particular,
that f satisfies f(r) = {f(y) | yex}. It is not hard to check that f[W, is a

witness for 9(z), so by uniqueness of 7, as a witness for ¥(z), f [ W, = m,. By this
observation, we have

FGE) ={fw) lyei(z)} = {m() [yei(2)} = {mj» (W) [ yei(2)} = mi)(i(2)-
Hence f = 7j(.) and we have established uniqueness. It follows that j(z) € B.

We have shown B is j-inductive, and so W = B. We now define the Mostowski
Collapsing map 7w on W as follows: For each z € W,

m(x) = 7y (x).
Claim 1. For all y € W,
(9) if zey, then m,(x) = my(z).

Proof of Claim 1. Let B = {y € W | if ey then m,(x) = my(z)}. We show B is
j-inductive. Vacuously, a € B. Suppose z € B; we show j(x) € B. Let y be such
that j(x)Ey. Then, using the fact (twice) that z € B, we have

myr = {my(u) |uexr} = {me(u) | uexr} = {7 (u) |uET} = () (2).
Therefore j(z) € B. Since B is j-inductive, B = W and the result follows. [J
We show that 7 satisfies (8) for each € W. Using statement (9), we have:
m(x) = me(x) = {ma(y) [yea} = {n(y) [ yex},

as required.
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Finally, we show that 7 is the unique f satisfying, for all x € W, f(z) = {f(y) |
yEx}. Given any such f, we show f = . Let

B = {x € W for all y such that y =z or yez, f(y) =7(yv)}.

We show B is j-inductive. The fact that a € B is immediate; in particular, 7(a) =
0 = f(a). Assume x € B, so that f(y) = w(y) for all y for which y = x or yez.
Then since yE j(z) implies y = = or yEx (as we observed earlier),

fG@) ={fy) yej(@)} = {x(y) | yei(x)} = x(j(2))-
To show j(z) € B, we must also show that for we j(x), f(u) = m(u), but this follows
from the fact that x € B. We have shown j(z) € B. Therefore B is j-inductive and
B =W. It follows that f = m, as required. [

As we establish properties of the collapsing map 7, we will denote its range by N.
We establish some important properties of 7 and N:

Theorem 10. (Properties of 7 and N)

(1) N is a transitive set.

(2) 7 is 1-1.

(3) For allz,y € W, xey if and only if m(x) € w(y).

(4) (N, €) is a well-ordered set. In particular, 0 = () is the €-least element of N.
(5) Eachn € N is a transitive set. Moreover, n ={m € N | m € n}.

Remark 4. Part (3) of the theorem tells us that the usual membership relation
€ on the range N of 7 exactly parallels the relation e on W: Whenever z is an
e-predecessor of y in W, in the sense of the relation g, the images 7(z) and 7 (y)
have the same relationship to each other, namely, that 7(z) is an €-predecessor of
m(y); the converse statement also holds. This property, together with the fact that
7 is a bijection from W to N, tells us that 7 is an order isomorphism from W to
N; this means that (N, €) is an exact reproduction of (W,€). Intuitively, we may
think of this relationship as indicating that the “blueprint” W has been faithfully
reproduced as a concrete (transitive) object in the bottom portion of the universe.
As we shall show in a moment, N turns out to be the concrete set w of natural
numbers.

Part (5) tells us that each n € N consists precisely of the elements of N that
precede it in the well-ordering €. Thus, 1 = {0},2 = {0, 1}, and so forth.

Proof of (1). Suppose 7(z) € N and v € w(x). We must show v € N. Since
m(x) = {n(y) | yex}, it follows that u = 7w (y) for some y € W. Thus u € N.

Proof of (2). Suppose m(xz) = m(z) but z # z. Recall by extensionality of £
(Lemma 4) that W, # W,. Without loss of generality, assume there isu € W, —W.,
so uex and uk z. Then 7(u) € m(x). Since m(z) = w(x), then 7(u) € 7(z), whence
wE z, and this is a contradiction. We have shown 7 is 1-1.

Proof of (3). This follows immediately from the definition of 7.

Proof of (4). It is easy to see that the first part follows from (2) and (3); we verify
a few of the required points. For the irreflexive property, notice that forz € W, zex

36



Magical Origin of the Natural Numbers

if and only if m(x) € w(x); since the former is false, the latter is also false. Similar
reasoning shows (N, €) is antisymmetric, transitive, and a total order. We verify
that € well-orders N: Suppose C' C N is nonempty. Let B denote the preimages
of C'in W; that is, b € B if and only if w(b) € C. Let by be the least element of
B. Let ¢g = w(bo). We show ¢ is €-least in N: Let 7(b) € C. Then byEb, and so
m(bg) € m(b). Since b was arbitrary, we have shown C has an €-least element.

For the second clause, let m € N. In defining m, we have already seen that
m(a) = 0. Let x € W be such that w(z) = m. Since aEz, then by (3), 0 = 7(a) €
m(x) = m.

Proof of (5). The fact that each n € N is a transitive set follows from the fact
that € is transitive as an order relation: For all m,n,r € N, if m € nand n € r,
then m € r. To show that n = {m € N | m € n}, we perform a computation: Let
x € W be such that n = 7(z).

n = mx(x)
= {n(y) |yex}
{n(y) | 7(y) € m(x)} (because 7 is an order isomorphism)
= {meN|men}.O

Having defined the Mostowski Collapsing Map 7 on W, we can now demonstrate
how 7 “collapses” the blueprint W to the concrete set w of natural numbers. We
begin with the computation of the first few elements of w. We will make use of
Corollary 9 in which a few values of W, were computed.

Computation of 0. Here, 0 arises as the collapse of a in W:
m(a) ={n(y) |[yea} =0 =0.
Computation of 1. Here, 1 arises as the collapse of j(a) in W. Recall from

Corollary 9 that W) = {a}.

m(j(a)) = A{m(z)|zej(a)}
= {r(@) [z € Wj)}
= {r(2) [z € {a}}
= {r(a)}
= {0}
1.
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Computation of 2. Here, 2 arises as the collapse of j(j(a)) in W. Recall from
Corollary 9 that Wj;)) = {a,j(a)}.
() = A=
- [
= {r
- [
= {0,1
2.

z) |zej(j(a))}
z) |z € Wigant

)
)
) |z € {a,j(a)}}
)
}

a

~ o~~~

,7(j(a))}

Computation of 3. Here, 3 arises as the collapse of j(j(j(a))) in W. Recall from
Corollary 9 that W;(;(ja)) = {a, j(a),i(j(a))}.
m(j(((a) = Ax(z) [2ei(i(i(a)))}

= An(@) [z € Wi}

= {n(@) |z € {a,j(a),j(i(a))}}

= {n(a),7(j(a)), 7(i(G(a))}
= {012}

3.

These observations suggest that, at least in some sense, m “gives rise” to the
natural numbers. We must be careful not to claim too much here, though, because
the numbers 0, 1,2, 3, ..., with their usual definition as sets 0, {0}, {0, {0}},..., are
already present in the universe, even without the Axiom of Infinity, as part of the
way the first stages of the universe are built; these come into being on the basis of
the other axioms of ZFC. What the other axioms do not tell us, however, is how to
form the set of natural numbers, and, in fact, without the Axiom of Infinity, it is
not possible to prove that such a set even exists. Therefore, the real content of our
claim that m “gives rise” to the natural numbers is that it gives rise to the sequence
0,1,2,...1in its entirety, as a completed set—seen as emerging from the self-referral
dynamics of the original Dedekind self-map j: A — A.

We accomplish our aim by showing how to derive from 7 the successor function s,
which, once defined, specifies the full sequence of natural numbers: 0, s(0), s(s(0)), .. ..
Recall that the set-based version of the successor function has this form: s(z) =
x U {x}. For instance,

5(0) = s(0) = U {0} = {0} = {0} = 1.
We will see that the values of the successor function s are obtained simultaneously

from a certain type of interaction between 7 and j; to say it another way, s turns
out to be the unique map that makes the following diagram commutative:

w i[w W

(10) = x

=
=
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Notice that, in order for any map s : N — N to make diagram (10) commutative,
it must be true that s = 7o (j [ W)on~!. (This computation makes sense because
7 is a bijection.) We can therefore take this to be the definition of s and then verify
that s is truly the successor function on the usual set of natural numbers.

Theorem 11. Define s = mo (j [W)on~! : N — N. Then, for alln € N,
s(n) =nuU{n}.

Proof. By the definition of s, diagram (10) must be commutative. Let B =
{zx e W | s(r(x)) = n(z) U{m(x)}}. We show B is j-inductive. This is enough

because every n € N is w(x) for some x € W, so, assuming B = W, we have
s(n) = s(m(x)) = m(z) U{m(z)} =nU{n}.
To prove B is j-inductive, first we show a € B: By commutativity,
s(m(a)) = 7(j(a)) = {m(u) [uej(a)} = {m(a)} = {0} = 0U{0} = 7(a) U {7 (a)}.
Next, assume z € B, so s(n(z)) = w(z) U {m(x)}. We show j(x) € B, that is,
s(r(j())) = 7(j(x)) U {n(j(z))}. But
s(r(i(x))) = 7))
{m(v) | yeii(=))}
= {r) lyej(@) ory = j(z)}
= {r@) lyej(@)} U{r(y) [y = ()}
= 7(j(x)) U{n(i(z))}. O
We will now verify in several theorems below that N and s have the expected

properties. We will say that a set S is inductive if ) € S and whenever z € S, we
have x U {z} isin S.

Theorem 12. N is an inductive set. Indeed, N = ({I | I is inductive}.

Proof. We have seen already that ) € N. Suppose n € N. Then for some x € W,
n = m(x). But now
nU {n} = s(n) = s(r(z)) = (j(z)) € N.

For the second clause, it is sufficient to show that N C I for every inductive
set I. Let I be any inductive set. Let B = {z € W | n(x) € I}. We show B is
j-inductive. By definition 7(a) =0 € I, so a € B. If x € B, then n = n(z) € I.
But now

j@)eB & 7n(j(x)) €l & s(w(x)) el & s(n) el & nu{n}tel,

and the last of these statements is true by definition of “inductive.” Hence B is
j-inductive, and so, for every n € N, n € I, as required. [

The property that N has of being an inductive set leads to the Principle of Math-
ematical Induction:

Principle of Mathematical Induction. Suppose A C N has the following two
properties:
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(1) 0 e 4
(2) whenever n € A, s(n) € A.
Then A = N.

We can now prove the Principle of Mathematical Induction. Before doing so,
we state a weaker version that is often also used, based on formulas. A formula is
simply an expression involving set parameters. Examples include statements like
“r is an even natural number” and “z has at least two elements.” We have the
following weak principle of induction:

Weak Principle of Mathematical Induction. Suppose ¢(z) is a formula*!
whose parameter x represents an element of N. Suppose further that

(1) ¢(0) holds true;
(2) whenever ¢(n) holds, ¢(s(n)) also holds.

Then ¢(n) holds for every n € N.

This principle is called “weak” because the Principle of Induction implies it, but
not conversely: Given any formula ¢(z), where x represents elements of N, suppose
(1) and (2) of the Weak Principle hold. The Axiom of Separation (a ZFC axiom)
implies that the collection A = {n € N | ¢(n)} is a set, and so (1) and (2) of the
Principle also hold. Since the Principle of Induction holds, the conclusion of the
Weak Principle now follows. On the other hand, one cannot prove the Principle of
Induction from the Weak Principle because one can find subsets of N that are not
the extension of any formula; this is because there are more subsets of N than there
are formulas of this kind.*?

The Weak Principle is useful because it generalizes to classes—a topic we will
take up in Section 15.

Theorem 13. The Principle of Mathematical Induction is correct.

Proof. Let A C N satisfy properties (1) and (2). Properties (1) and (2) assert
that A is in fact an inductive set. By Theorem 13, N C A. But since A C N also,
we conclude that A = N.

An alternative proof is obtained by using our earlier observation that (W,g) and
(N, €) are order-isomorphic, so that, in particular, N is well-ordered under €. Thus,
suppose A C N satisfies (1) and (2). We will use the fact that N is well-ordered to
show A = N. Certainly 0 € A. Assume A# N. Let S={me N |m¢g A}. S#0D
by assumption. Let n be the e-least element of S, using the well-ordering; we have
seen that n # 0. Let y € W with 7(y) = n. Let = be the e-immediate predecessor of
y. Let m = w(x). The order isomorphism between (W, ) and (N, €) guarantees that

41Forma11y, formulas are formed from variables and the membership relation €; notions like
“natural number” and “function” are defined in terms of these. Formulas are defined inductively
(on the length of the expression). If x,y are variables, both z = y and z € y are formulas. If
¢, are formulas and z is a variable, so are ¢ A Y, ¢V ¢, ¢ — 9, ~¢p,Ix P, and Vx ¢. Formulas
can have any finite number of parameters, so, to be more formal, we could write ¢(z,y1,...,Yyx),
where y1,. .., Yy, are variables standing for arbitrary sets; for readability, we just display x.
42There are only countably many formulas but uncountably many subsets of N.
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m is the €-immediate predecessor of n (so that s(m) = n, and, moreover, m € n,
but for all » € N, it is not true that m € r € n). Now m ¢ S by leastness of n,
som € A, and it follows that s(m) € A. But this contradicts the fact that n ¢ A. O

Notation. A part of the proof shows that, as we would expect, every nonzero
element of N has a unique immediate predecessor. For n # 0 in N, we denote the
immediate predecessor of n by n — 1. Similarly, we will adopt the usual convention
of writing n + 1 for s(n), whenever n € N. Finally, it will be convenient, when
emphasizing the use of € on N as an order relation, to write < in place of €, as is
customarily done. Moreover, we shall write m < n if and only if either m € n or
m=n.

Theorem 14. 0 ¢ rans and s is 1-1. Moreover, N = {0} Uran s.

Proof. If s(m) = 0 for some m € N, let x € W be such that w(xz) = m. Then
0 = 7(a) = s(n(z)) = w(j(x)), and so, because 7 is 1-1, a = j(x), which is
impossible by Claim 7.

To prove s is 1-1, suppose s(m) = s(n), where m,n € N. Let z,y € W with
m(x) = m,7(y) =n. Then

s(m) = s(n) & 7(j(z)) =7(j(y) & j@)=jl) & r=y & m=n
Finally, suppose n # 0 is in N. Let m be its unique immediate predecessor, so
s(m) = n. We have shown that rans = N — {0}. It follows that N = {0} Urans. O

Now we can define the concrete notion “natural number.” A set n is a natural
number if and only if n € N; equivalently, if and only if n belongs to every inductive
set. This concrete definition is the one that allows us to see each number explicitly
rendered as a set:

Theorem 15. For eachn € N, if n #0, thenn ={0,1,2,...,n— 1}.

Proof. By Claim 10(8) and the fact that « is an isomorphism, for every m € n,
m < n — 1. Conversely, if m < n — 1, then either m € n — 1-—so by transitivity,
m € n—or m = n — 1, in which case also m € n. Thus n consists precisely of the
elements of N that precede n, the largest of these being n — 1. I

In light of Theorem 13, it is clear that N and w (defined at the beginning of this

paper) are the same set. For the rest of the paper, we will use “w” as the name of
this set.

9. DEFINITION BY INDUCTION AND THE PEANO AXIOMS

We have shown how to derive w and the successor function from an arbitrary
Dedekind self-map. Since the collapsing map 7 is an order-isomorphism, we obtain
immediately that, letting < denote the membership relation €, (w, <) is a well-
ordered set. We will now carry this development one step further, to establish
that the usual Peano axioms for arithmetic hold true. To take this step, we need
to provide definitions of addition and multiplication, and to do this, we will need
a formulation of definition by induction, a simple version of which follows almost
immediately from the work we have already done in the previous section. We then
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state a slightly stronger version that will be more suitable for a definition of addition
(4+) and multiplication (). We state these formulations of definition by induction
in terms of Dedekind self-maps to illustrate how pervasive Dedekind self-maps are
in the fabric of mathematics. These definitions will allow us to rigorously define
addition and multiplication on w, and we will finally be able to state the Peano
axioms and indicate why they are satisfied by the structure (w, 4+, ).

To begin, we return to the diagram that showed how j [ W : W — W is collapsed
to the successor function s:w — w:

w i[w w

(11) g ™

S
w —— w

The Mostowski Collapsing Theorem tells us that 7 is the unique function defined
on W satisfying w(x) = {n(y) | yex}. This result allowed us to demonstrate that
the set w and the successor function s erxist (as a function from w to w).

We wish now to look at the diagram (11) in a slightly different way. Initially, we
viewed the diagram as starting with the maps j [ W and 7, which occupied the top
and two vertical sides of the square determined by the following diagram:

W i[w w

S
S

The bottom edge of diagram (12) was filled in by defining s to be a composition of
the other maps (and their inverses): s =7o (j [ W)on L.

Having established the existence of w and s, we can view the diagram (11) in
another way. We begin as before with j [ W : W — W and now also take as given
the map s : w — w, defined by the formula s(n) =n U {n}.*> For the moment, we

leave the two vertical edges of diagram (13) below unspecified.

43Tochnica11y, this amounts to defining s on w to be 5 [ w; recall that 5 is defined on all sets by
5(x) = x U {z}. One needs to verify that the range of 5 [w is a subset of w, so that we may write,
as usual, s : w — w. We do this quick verification here: Let A C w be the set {n € w | s(n) € w}.
Certainly 0 € A and if n € A, s(n) € w, since w is inductive. Therefore, A is inductive, so w C A,
yielding that A = w.
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We now define m on W as before, this time as a candidate to fill in the vertical
edges of the diagram: w(x) = {n(y) | yex}. As we argued earlier, 7 is uniquely
determined by this relation. Let A C w be defined by

A={ne€cw]|for somezecW, n(x)=n}.

Showing that A is inductive will establish that ran 7 = w. Since 7(a) = 0, as we
argued before, 0 € A. If n € A, then let € W with n(z) = n. We show s(n) € 4
by showing 7(j(x)) = s(n) =nU {n}. But

m(j(x)) ={m(y) [yei(x)} = {n(y) [yea} U{m(z)} = 7(x) U{m(z)} = nU{n},

as required.
We can now show the following:

Theorem 16. 7 : W — w is the unique map for which the following two conditions
hold:

(i) m(a) = 0.

(ii) Diagram (11) is commutative; that is,
(14) som=mno(j W)

Proof. We showed in Theorem 12 that equation (14) holds true (we established this
using a different definition of s, but we also showed that for each n, s(n) = nU{n}).

We verify uniqueness: Suppose h : W — w satisfies (i) and (ii) above; that is,
h(a) =0 and soh =ho (j [W).

W i[w W

h h

S
w E— w

We establish uniqueness by j-induction: Let B C W be defined by
B={xeW|h(z)=n(z)}.

Since (i) holds for both functions, ¢ € B. Assume x € B. Then since both
functions make the diagram commutative, we have

m(j(x)) = j(s(x)) = h(j(2)),

and so j(z) € B, and B is j-inductive, as required. [

We observed earlier that 7 is an order isomorphism. In the present context, 7 is
another kind of isomorphism, called a Dedekind self-map isomorphism. We define
this concept now. Suppose g : B — B is a Dedekind self-map with critical point b
and h: C — C is a Dedekind self-map with critical point c. A Dedekind self-map
morphism from g to h is a map 3 : B — C satisfying:

(1) B) = ¢
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(2) the diagram is commutative; that is, Sog=ho [.

B g B
B B
c h c

Moreover, if /3 is a bijection, 3 is a Dedekind-self map isomorphism.** The intuition
behind a Dedekind self-map morphism § from g : B — B to h : C — C is that
the structural relationships given by g are reflected in h: if g takes x to y in B,
then h takes §(x) to B(y) in C. Moreover, if 8 is also an isomorphism, then the
relationships between the two maps are structurally identical: For all z,y € C, g
takes = to y if and only if h takes 5(x) to S(y).

We introduce some notation for Dedekind self-map morphisms: Notice that every
Dedekind self-map g : B — B with critical point b specifies three parameters: B, g,
and b. We therefore may specify this Dedekind self-map by specifying the triple
(B, g,b). Then, we can indicate that ( is a Dedekind self-map morphism from g to
h taking b to ¢ by simply saying that 5 : (B, g,b) — (C, h, ¢) is a Dedekind self-map
morphism.

Our reasoning in the previous paragraphs has demonstrated the following:

Theorem 17. Let m : W — w be defined by w(x) = {n(y) | yex}. Then 7 is the
unique Dedekind self-map morphism from (W,j [ W, a) to (w,s,0). Moreover, 7 is
in fact a Dedekind self-map isomorphism. [

Theorem 18 tells us that, structurally, W and w are identical, with “successor”
functions that behave in exactly the same way; the structures (W,j [ W,a) and
(w, s,0) are identical except for notational differences.

It is natural to expect that the isomorphism 7 is invertible—that 7= is also a
Dedekind self-map isomorphism, and that it is the unique morphism from s to j [ W.

We verify this now. Henceforth, we let 7 denote 1.

1

S
w —— w

W i[w W

44A5 an interesting sideline, we point out that the concept of a Dedekind-self map isomorphism
from j [ W to s : w — w is a slight weakening of “E-order isomorphism” to “Eg-order isomorphism.”
We can explain this point in the following way. Suppose we are given g and h as in the definition
of Dedekind self-map morphisms. Suppose Ey is defined on B by x E4 y if and only if y = g(x) and
Ej, is defined on C by z Ej, y if and only if y = h(z), then 8 is a Dedekind self-map isomorphism
if and only if 8 is an (Eg, Ej)-isomorphism (that is, 8 is a bijection and z E4y if and only if
B(x) Ey, B(y)). In particular, to say that 7 is a Dedekind self-map isomorphism from j [ W to s is
the same as saying that it is an order isomorphism, relative to the relation Eq.
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Theorem 18. Let 7 : w — W be m=1. Then 7 is a bijection and is the unique
Dedekind self-map morphism from (w,s,0) to (W,5 | W,a).

Proof. Since 7 = 77!, 7 is a bijection and 7(0) = a. Then
TOS=JOT & S=TMO0joOT & SOT =Toj.

Since 7 is a Dedekind self-map morphism (diagram (11)), the last of these equa-
tions (som = mwoj) holds true, and so the first one (70 s = j o7—see diagram (15))
does as well.

For uniqueness, we first observe that if g is a Dedekind self-map morphism from
(w,5,0) to (W, j [ W,a), then g must be 1-1 and onto (see diagram (16)).

(16) g g

Let A={ncw]gn) & {9(0),g9(1),...,9(n—1)}}. We show A is inductive; this
will establish that g is 1-1. Clearly 0 € A. If n € A and g(s(n)) = ¢(i) for some
1,0 <7 <mn — 1, notice first that i # 0 since we would have in that case

a=g(0) = g(s(n)) = j(g(n)),
which is impossible since, for no z € W is it true that « € a. Therefore, i = s(k) for
some k,0 < k <n—1, and we have

i(g(n)) = g(s(n)) = g(s(k)) = j(g(k)).

Since j is 1-1, g(n) = g(k) which contradicts the fact that n € A. Therefore,
s(n) € A as required.

To see that g is also onto, let B C W be defined by B = {x € W | for some n € w,
g(n) =a}. Clearly a € B. If x € B, let n € w with g(n) = . We show j(z) € B.
But

i) = j(g(n)) = g(s(n)),
as required. Since B is j-inductive, B = W, and g is onto.

To complete the proof, we must show that 7 = g. But notice now that g~

the following diagram commutative:

I makes

wo_dlw 1%
(17) . L

By uniqueness of 7, g7 =7, andso g = (¢ ) ' =rt =70

Generalizing this result slightly provides us with a way to state a weak form of
the Definition by Recursion Theorem:
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Theorem 19. (Definition by Recursion on w) Suppose j : A — A is a Dedekind
self-map with critical point a. Then there is a unique Dedekind self-map morphism
7 from (w, s,0) to (A, j,a), as in diagram (18).

w 5 . w
(18) . .

A J A

Proof. We have already completed the main steps of the proof; we review these
now. We obtain W C A as the smallest j-inductive set. We have seen that 7 : W —
w, as defined earlier, is unique such that 7(a) = 0 and 7o j [ W = so 7 and that 7
is a bijection. It follows, as we have shown, that if 7 = 7!, then 7 is a bijection
and the unique Dedekind self-map morphism from (w, s,0) to (W,j [ W, a). The
existence of T requires one small additional step. Consider the following diagram,
recalling that incw, 4 is the inclusion map W — A:

w w

(19) W W
incw, o incw, A

A J A

We now define 7 = incyy 4 o 7. Clearly 7(0) = a and, for all n € w,
(20) joincw,ao07T =incy, 40407 =incy,4 0T 0 s,
so diagram (19) is commutative. It follows that
joT=Tos,

as required.

For uniqueness, suppose h : w — A satisfies the same conditions: h(0) = a and
hos = joh. We show h = 7 by proving by induction that h(n) = 7(n) for all
n € w. Certainly h(0) = a = 7(0) by assumption. Assuming h(n) = 7(n) we show
h(s(n)) =7(s(n)). But

h(s(n)) = j(h(n)) = j(T(n)) = T(s(n)),
t

as required. This completes the induction and shows that h =7. O

Theorem 20 allows us to perform inductive definitions of sequences, indexed by
the elements of w, in the usual way. For instance, suppose we wish to formally define
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the sequence of powers of 2: 20 21,22 .. =1,2,4,....*> Theorem 20 guarantees

that a single function or sequence exists that will produce precisely these values.
w — w

(21)

T T

w

w

To use the theorem, we need to specify a Dedekind self-map j, as in the bottom
row of diagram (21), and the critical point of j that will be used. The map j declares
how the next value is computed from the current value as we move through the
sequence, and the critical point tells us the value we start with. For this purpose,
we define j : w — w by j(m) = 2m and, for our critical point, choose the value 1.
Now Theorem 20 guarantees there is a unique 7 : w — w that takes 0 to 1 and
makes the diagram commutative.

Now we define 2™ = 7(n) for each n € w (recall that we are defining the exponen-
tial function in this example). We can now prove that 7 has the expected properties
of the exponential function, namely:

20 = 1,
ontl — 9.9n,

The first clause follows because 2° = 7(0) = 1, by definition of 7. For the second
clause, we have

2" =F(n +1) =7(s(n)) = j(T(n)) = j(2") =2 2".

We will now use Theorem 20 to tie up some loose ends from the previous section.
Let j : A — A be a Dedekind self-map with critical point a, and define W C
A as above. Let i = j [W. We obtain by definition by recursion the sequence

(9,4, ...,4",...) of iterates of i, where i’ is by convention idy:
Let WW ={g|g:W — W} and let J; : W — WW be defined by
(22 Hg)=iog

Using Theorem 20, let 7 : w — WW be the unique map for which 7(0) = idy
and diagram (23) is commutative:

(23) . .

ww Ji ww

45Note that in the formal development of arithmetic, before defining this exponential function,
we would need to define addition and multiplication and establish some of their properties. At
this stage, however, we are not attempting to provide a formal definition of exponentiation; our
intention is just to illustrate the use of the theorem with a simple example, stepping outside the
formal development for a moment.
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Define i" = 7(n) for each n € w. We have the following result.

Theorem 20.
(1) i® =idw and, for each n € w, "1 =io04i", so that i" is the nth iterate of i.
(2) W = {a, (), (@), .-} = {a,i(a), 2(a),.. } = {i"(a) | n € w}
Proof of (1). The case n = 0 follows by definition of 7(0). Also, for n > 0,
commutativity of diagram (23) gives us the following;:
T(n+1)=7(s(n)) = Ji(T(n)) = J;(i") =io03".
Proof of (2). By (1), for all n € w,i"(a) € w. This shows that W contains all
the terms i"(a). We show that these are the only elements of W. Let B C W be
defined by
B = {x € W |for somen € w, x =i"(a)}.
Notice a € B since a = i°(a). Assume x € B, so x = i"(a) for some n € w. Then
i(z) =i(i"(a)) =" (a) € B.

We have shown that B is j-inductive, and so B = W. Therefore, every element
of W is one of the terms i"(a). This completes the proof of (2). O

A slight generalization of this result allows us to verify a point made at the
beginning of the paper, that, whenever j : A — A is a Dedekind self-map with
critical point a, the sequence of mapsid4, j, joj, ... forms a blueprint for w just as
W = {a, j(a),j(j(a)),...} does. Let us define the Dedekind self-map J; : A4 — A4,
as in equation (22), by J;(h) = j o h, with critical point ida. Recall from earlier
observations (page 21) that, if j is a Dedekind self-map, so is J;. Combining our
work in Theorems 19 and 21, we get:

Theorem 21.

(1) The map J; : A* — A4 is a Dedekind self-map with critical point id 4.

(2) There is a set W C A4 whose elements are precisely ida, j, jo j, . ... Moreover,
there is a unique 7 : w — A4 for which #(0) = ida and the diagram below is
commutative; in particular, W = ran+.

7 7

AA Jj AA

(3) The map 7 : s — J; [ W is a Dedekind self-map isomorphism.
(4) For eachn € w, j” =7(n). O

To define addition and multiplication on w requires a parametrized form of defi-
nition by induction. One way to do this is due to P. Freyd:*°

461145 result, proven in [24, Theorem 5.21], is somewhat stronger than the version we state here.
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Theorem 22. (Freyd’s Recursion Theorem) Suppose j : A — A is a Dedekind self-
map with critical point a and 14 x s : AXw — A X w is defined by (14 x s)(a,n) =
(a,s(n)) = (a,n+1). Then there is a unique 7 : A X w — A for which 7(a,0) = a
and the following diagram commutes:

AXw Laxs | Axw

(25) . .

A J A

Proof. Given A, an element a € A, and a Dedekind self-map g : A — A with
critical point x, we obtain 7 as follows.

Let J; : A4 — A“ be the function defined as before by J;(f) = jo f. As was
previously observed, J; is a Dedekind self-map with critical point id4 and, as in
Theorem 22, we have a unique map 7 for which 7(0) = id4 and the following is
commutative:

w —— w
(26) . :
AA Jj AA

We now pull back to diagram (25) by defining 7 : A X w — A so that 7 is the
exponential adjoint of 7. In other words, we define 7 by

(27) 7(b,n) = (7(n))(b)-

We verify that 7 makes diagram (25) commutative:

j(r(b,n))

= (10(1lax9))(bn).

Uniqueness of 7 follows from its adjoint relationship with 7 (alternatively, unique-
ness can be checked directly). OJ

We can make use of the theorem by expressing it in the following more familiar
form: Given a set A, an element a € A, and a function g : A — A, the theorem
says that a function 7: A X w — A is uniquely determined by the following data:

7(a,0) = a,
m(a,n+1) = g(r(a,n)).
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Using Freyd’s Recursion Theorem, we may define addition on w as follows: For
each m € w, define 7% : w X w — w by

7T(m,0) = m,
tH(m,n+1) = s(tT(m,n)).

Then, for each m,n € w, we define m +n = 7% (m,n).
Likewise, for multiplication, we define, for each m € w, a function 7* : W X w — w
by
m(m,0) = 0,
™ (m,n+1) = 7°(m,n)+n
Then, for each m,n € w, we define m -n = 7*(m, n).

It is now a straightforward exercise to verify that the axioms of Peano Arithmetic
are satisfied by (w, +, ). Here is a version of the Peano axioms:*”

(i) For each m € w, s(m) # 0.

(ii) For all m,n € w, s(m) = s(n) implies m = n.
(iii) For all m € w, m + 0 = m.
(iv) For all m,n € w, m+ s(n) = s(m + n).
(v) Forallm e w, m-0=0.
(vi) For all m,n € w, m-s(n) = (m-n)+n.
(vii) Principle of Induction.

We will assume that, on the basis of these axioms, the usual theorems of arith-
metic on w have been established.

We are now in a position to give formal definitions of the concepts “finite” and
“infinite,” and we can verify that, in our definition of £, joining sets are always
finite.

Definition 4. (Finite and Infinite Sets) A set X is finite if there isn € w for which
there is a bijection from n to X. A set is infinite if it is not finite.

Theorem 23. Suppose j: A — A is a Dedekind self-map with critical point a. Let
W ={a,j(a),i(j(a)),...}. Suppose F joins x toy in W. Then F is finite.

Proof. Recall E is a well-ordering of W and (W, ) isomorphic to (w, €) under the
collapsing map 7 : W — w. Let m,n € w be such that, 7(z) = m and 7(y) = n.
Then, using familiar properties of the arithmetic of w, the chainm < m+1 < ... <n
has £ =n —m + 1 terms. Since 7 is a bijection, |F'| = ¢, as required. [

10. BUILDING THE FIRST STAGES OF V

An important application of Theorem 20 is the definition of the first stages
(Vo, V1, Va, ...} of the universe V. The stages Vo, Vi, Va, ... of the universe V are
obtained by taking repeated power sets, starting with the empty set (), where, by
definition, the power set P(X) of a set X is the set whose elements are the subsets
of X.

4TThese are taken from [37].

50



Magical Origin of the Natural Numbers

Speaking less rigorously for the moment, what we wish to do, as a first step, is
apply definition by recursion to obtain the sequence (Vp, V1, Va,...) as follows:

Vo = 0
Vi1 = PW)
Then, for our second step, we wish to define V,, as the union of these stages:
(28) Vo=V
necw

Carrying out these steps more rigorously presents a few obstacles. First of all, if
we try to make careful use of our Definition by Recursion Theorem (Theorem 20—
see diagram (29) below),

(29) . .

it is not clear what the value of A should be, which must be big enough to contain
all the finite stages V;,, n € w. A natural choice for A would be V,,, but diagram (29)
is telling us about how V,, is to be built, so we may not assume that V,, already
exists as a background set.

A solution is to use the collection HF of all hereditarily finite sets (defined below),
which will indeed contain all the sets in the stages Vy, Vi, Vo, ..., and which can be
defined without referring to w.

Taking this approach, we then are faced with the theoretical problem that HF
may not be a set; since the Definition by Recursion Theorem requires the entity A
in diagram (29) to be a set, use of HF in place of A in diagram (29) is not allowed.
This difficulty can be solved by introducing a slight generalization of the Definition
by Recursion Theorem, which will allow us to use even very large collections (known
as proper classes) in place of A in diagram (29). This generalization will allow us
to use HF, or even V itself, in place of A in that diagram. Using this approach, we
will be able to describe formally the sequence of stages (Vp, Vi, Vo, ...) and define
the union of the stages in a rigorous way. If we are working in a ZFC universe (in
which case we are assured of the existence of w), we will then be able to define V,
as the union of the stages (Vp, V1, Vo, ...) in a formally correct way. On the other
hand, if we are working in a ZFC — Infinity universe V', as will often be the case,
these techniques will allow us to conclude, in a rigorous way, that forming the union
of these stages produces the entire universe V' if w does not exist in the universe.

In the rest of this section, we will develop the details for this more rigorous
treatment. The reader who wishes to skip these technical details may safely skip to
the next section.

Our first step in this exposition is to treat the issue of replacing the set A in
diagram (29) with a larger type of collection. For this purpose, we formulate a class
version of Theorem 20. We discuss classes in more detail in Section 15. For our
purposes in this section, we think of a class C as a collection of objects defined by
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a formula. In other words, a class C will be defined by C = {z | ¢(x)} for some
formula ¢ (having possibly finitely many other set parameters not displayed).

Let us first observe that any set is a class. For instance, the set S = {0,1} =
{0,{0}} can be specified by:

{Oa 1} = {x | (b(xa S)},
where ¢(z,y) is the formula z € y.

In other words, in the case of an ordinary set z, a defining formula can use z
itself as one of its parameters.

On the other hand, an example of a class that is not a set is B = {{y} | v is a set}.
Formally, the formula ¢(z) that defines B states “there is z such that for all u, u € =
if and only if u = 27: B = {z | ¢(z)}. (Here, x represents a set of the form {z} and
the condition states that the only element of = is z.) Intuitively, a collection like
B spans the universe and so is too big to be a set. Such classes are called proper
classes.

Here, then, is a class version of Theorem 20.

Theorem 24. (Strong Definition by Recursion Theorem for w) Suppose C is a
class, c € C, and j : C — C is 1-1 and has critical point ¢, and is itself a class
function. Then there is a unique class map T : w — C such that 7(0) = ¢ and the
following is commutative:

o 9 —5 5

€|

(30)

hll

T

C J

Q

Remark 5. We have introduced a new symbol @ in the statement of Theorem 25.
We provide an explanation of this symbol here. Our intention for the proof is to
mimic the proof of the Mostowski Collapsing Theorem (p. 34). If we are certain
that we are working in a ZFC universe V', then the proof will work as before, and
the notation @ should be understood to mean simply w. But if we are working in a
ZFC — Infinity universe V, then it is uncertain whether w exists in the universe, and
the steps in the proof that make reference to w will not make sense. In that case,
we think of the finite ordinals as collected together to form a proper class within V',
and we denote this class w. We may still perform the usual inductive arguments on
@ as are typically done on w.*® Thus, if we are working in a ZFC universe V' that
contains the set w, then w = w; if we are working in a ZFC — Infinity universe V'
that does not contain any infinite sets, w signifies the proper class consisting of all
the finite ordinals 0,1,2,....

A second point about the statement of the theorem that should be mentioned is
that the phrase “there exists a class map...” that we see there must be interpreted
in the appropriate way, depending on whether the underlying theory is ZFC or
ZFC — Infinity. In the former case, the “class map” in this case is just an ordinary

48This point does require justification, but we postpone this verification until Section 16, where
the topic is developed systematically.
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(set) function (by the Axiom of Replacement). However, if @ is itself a proper class,
then the last line of the theorem statement should be understood to mean “there
is a finitary procedure which transforms s and ¢; to a formula ¢z, where ¢; is the
formula that defines j, ¢= is a functional formula, V' |= ¢=(0, ¢),* and, for alln € w,
if z € C is such that V' |= ¢=(n, ), y is such that V |= ¢=(n + 1,y), and z is such
that V' |= ¢;(z, z), then y = 2.”

One fact that we will need in the proof below is that a form of induction can be
proved for @, which states that if B is a subclass of @ that contains 0 and that has
the property that, for all n € @, if n € B, then 5(n) € B, then we may conclude
that B = @. This induction principle will be proven rigorously in Section 16; see
Theorem 38. Intuitively, this principle follows from the fact that the usual axioms
of arithmetic (the Peano Axioms) can be interpreted in the theory ZFC — Infinity;
since weak induction is included in those axioms, it holds for @.%° O

Proof. We follow the proof of the Mostowski Collapsing Theorem given on p. 34.
Let ¢(x, u) be the formula “u € @ and « is a function with domain u so that 2(0) = ¢
and for all 4, 0 < ¢ < u—1, 2(s(z)) = j(x(¢)).” We use induction on @ (see the
preceding remark) to show that B =@, where B is the subclass of @ defined by

B = {n € @ | there is a unique function ¢, such that ¢(¢,,n) holds}.

n sln n-+1
(31) tn —
C I C

Commutative Diagram Showing Behavior of ¢,, and ¢,

Certainly 0 € B; here, the unique map tg is the empty function. Also, 1 € B;
in this case, ¢ is defined on 1 = {0} and ¢;(0) = ¢. Note that this value for ¢;
is determined by the formula ¢. Next, we observe 2 € B. Here, t; is defined on
{0,1} and t3(0) = c¢. The value for t3(1) is also determined, in this case by the
commutativity requirement of the diagram: (1) = t2(s(0)) = j(t2(0)) = j(c).

For the induction step, assume n € B and n > 2. In particular, there is a unique
t, defined as in the definition of B, so that for 0 <i < n — 1, t,(s(7)) = j(tn(7)).
Define t,41 = tn, U {(n,j(tn(s(n — 2))))}. Note that j(t,(s(n —2))) € C since
tn(s(n —2)) € C. For 0 < i< n— 1, we have, by the induction hypothesis,

tnt1(s(i)) = tn(s(i)) = J(tn (1)) = J(tn11(2))-

49Note that the terminology V = ¢ means that the formula ¢ holds in the model/universe V.
Intuitively, V |= ¢=(0, ¢) means 7(0) = ¢; V = ¢=(n,z) means 7(n) = x; and V = ¢;(x,2) means
i) ==

50The Peano Axioms are listed on p.- 50. The connection between the Peano Axioms and
ZFC — Infinity is discussed in the footnote on p. 22.
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Also, for i =n — 1, because tp41 = tn, U {(n, j(tn(s(n — 2))))}, we have:

bt (5()) = tasa(s(n — 1))
= tnt1(n)
= Jj(ta(s(n —2)))
= J(tnsa(s(n —2)))
= J(tns1(i)).
To see that t,41 is unique, suppose 7 is also defined on n + 1 and satisfies
7(s(i)) = j(r(i)) whenever 0 < r < n— 1. Certainly r [ n = t,,, by uniqueness of t,,.
But now

r(s(n—1)) = j(r(n — 1)) = j(tn(n = 1)) = j(tas1 (0 — 1)) = tuya(s(n — 1)),
and so r = t,,+1. We have shownn + 1 € B.

This completes the induction argument and shows B = @, so for each n, we have
a uniquely defined ¢,, as described in the definition of B. We define 7 on @ by:
7(n) = tpt1(n). As in the proof of Claim 1 of the Mostowski Collapsing Theorem,
it follows that 7(n) = ¢, (n) for all m > n + 1. Verification that 7 has the required
properties follows easily. [

Theorem 25 allows us to replace the Dedekind self-map j : A — A from dia-
gram (29) with a Dedekind self-map defined on a class. For the purpose of defining
the sequence Vg, Vi, Vs, ... and V,,, one could use a map V' — V, but a somewhat
more elegant way is to use the class HF of hereditarily finite sets, mentioned earlier.

We define the class HF as follows: We place z € HF if the smallest transitive
set that contains = as a subset is finite.”! We define j : HF — HF by j(z) = P(z),
where P denotes the power set operator and P(z) is the set of all subsets of x.
We verify that ranj C HF: Notice that if y is finite and transitive, so is P(y).
Therefore, suppose € HF and y is the smallest transitive set containing = (which,
in particular, must be finite). Then, since P(y) is finite and transitive and P(z) C
P(y), it follows that P(z) € HF. Therefore, ran j C HF. Notice that () is a critical
point for j and that j is 1-1. Therefore, j is a Dedekind self-map on the class HF.

Theorem 25 now guarantees there is a unique 7 : @ — HF taking 0 to () and
making the following commutative:

1

(32)

hll

7

HF J HF

In particular, 7 satisfies the following:

(a) 7(0) = 0;
(b) for all n € w, T(s(n)) = j(T(n)).

51Recall that the axiom Trans (which asserts that every set is included in a transitive set) has

been included in ZFC; see the footnote on p.10. The “smallest” such transitive set is found by
forming the intersection of them all.
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If we write V,, = T(n), then these clauses become

(a') Vo =0

(b') for alln € w, V1 = P(Vy).

It follows that |J, .5 Vs € HF. Working in ZFC — Infinity, it is possible to show
that in fact (J, .5 Vo = HF .52

In the presence of the Axiom of Infinity—in particular, if w is present in the
universe—the sequence (Vp, Vi, Vo, ...) can be seen to be a set; indeed, this sequence
is just another name for the function 7, which in this case is defined on w. The
Union Axiom allows us now to form the union, which we denote V,:

(33) Vo =Jran7 = (J Vi
new
Moreover, since HF = V,,, it follows that HF is a set.

In the absence of the Axiom of Infinity—in particular, when we assume that no
infinite set exists (that is, working in ZFC — Infinity + —Infinity)—HTF is defined
in the same way, but in that context, it is a proper class, though as we mentioned
earlier, it is still the case that HF = Unew V.

For the ZFC context, we complete the construction of the stages of V' beyond V,
in Section 15.

11. INITIAL DEDEKIND SELF-MAPS

Starting from an arbitrary Dedekind self-map, we have derived the set w of
natural numbers together with its usual successor function s : w — w, which is
itself a Dedekind self-map. Intuitively, one considers the set of natural numbers as
the smallest type of infinite set. In the usual development of ZFC set theory, for
example, one proves that the size Ny of w is the smallest infinite cardinal, and one
can also show that w is faithfully embedded in every infinite set; that is, for any
infinite S, there is a 1-1 function f:w — S.

In Theorem 20, we proved something that is apparently even stronger: that the
successor function s : w — w is embedded in every Dedekind self-map, in a unique
way, so that not only is it true that every infinite set contains a copy of w, but in
fact every Dedekind self-map has within it the dynamics of the successor function s.

In this section, we show that s : w — w is not the only such function. Just as
there are many infinite sets that have the same size as w, and that therefore can lay
claim to this property that every infinite set must contain a copy of them as well,
so likewise are there many Dedekind self-maps that are “just like” s, and that are
likewise embedded in every other Dedekind self-map. These “smallest” Dedekind
self-maps are called initial; this terminology originates from the field of category
theory, and will be explained as this section develops. As we now show, a Dedekind
self-map j : A — A has this special “leastness” property if and only if j is Dedekind
self-map isomorphic to s : w — w.

52This is shown in Theorem 87 in the Appendix; in particular, Corollary 88 shows that from
ZFC — Infinity + —Infinity, we have V = Une; Vi. A direct proof from ZFC — Infinity 4+ —Infinity
that V = HF can be given as follows: Given any set x, let y be the smallest transitive set that
contains . Since —Infinity holds, y is finite, and so € HF.
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Theorem 25.

(1) Suppose k : U — U is a Dedekind self map, with critical point uw such that
(U, k,u) is Dedekind self-map isomorphic to (w,s,0). Suppose j : A — A is
any Dedekind self-map with critical point a. Then there is a unique Dedekind
self-map morphism o from (U, k,u) to (4,7, a).

U k U
(34) o o
A J A

(2) Suppose k : U — U is a Dedekind self-map with critical point uw. Suppose
(U, k,u) has the property that for every Dedekind self-map j : A — A with
critical point a, there is a unique Dedekind self-map morphism o from (U, k,u)
to (A, j,a). Then there is a Dedekind self-map isomorphism from (w,s,0) to
(U, k,u).

U

Remark 6. Part (2) of Theorem 26 is the converse to Part (1). These two results
tell us that the structure of the Dedekind self-map (w,s,0)—and therefore the
fundamental structure of the set of natural numbers—is completely characterized
by the universal property stated in the hypothesis of Part (2).

Proof of (1). Let 8 be a Dedekind self-map isomorphism from (U, k, u) to (w, s,0).
Let 7 be the Dedekind self-map morphism from (w, s,0) to (A4, j,a), as defined in
Theorem 20.

U k U

B B

7 7

(36) })4»})
N

A J A

Define ¢ from k to j by 0 = 7o 3. The proof that o(u) = a and joo =00k
is essentially identical to the proof of equation (20) in Theorem 20. The proof of
uniqueness is also essentially the same as the logic used in the proof of Theorem 20.
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Proof of (2). The idea here is that both (w, s,0) and (U, k, u) have the universal
property described in the hypothesis of Part (2) of the theorem. Diagram (37)
captures the relationships involved.

U —*t U
B B
w — w
(37) 5 5
U —t ~ U
B B
w — w

We let 5 : (U, k,u) — (w,s,0) be the unique Dedekind self-map guaranteed to
exist because of the hypothesis, and we let v : (w, s,0) — (U, k,u) be the unique
Dedekind self-map guaranteed to exist by Theorem 20. Notice vy o 3 takes u to u
and makes the following diagram commutative:

U k U
(38) ~yop3 o3
U k U

but idy : U — U does the same: idy(u) = u and the following is commutative:

(39) idy idy

By the uniqueness guaranteed by the hypothesis,

(40) idy =~vo0p.
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Likewise, we have 5(v(0)) = 0 and the following diagram is commutative:

Therefore, we also have
(43) id, = B on.

It is straightforward to verify that equations (40) and (43) together imply that
both 8 and v are bijections. Hence, in particular, v : (w,s,0) — (U, k,u) is a
Dedekind self-map isomorphism. [

We recall that Theorem 20 showed that the Dedekind self-map (w, s,0) is “less
than or equal to” all other Dedekind self-maps—that is, (w, s,0) is an nitial Dede-
kind self-map—by analogy with the leastness of w among all infinite sets. Now,
Theorem 26 shows that every Dedekind self-map that is Dedekind self-map isomor-
phic to (w, s,0) is initial as well, and, moreover, the only initial Dedekind self-maps
are those that are Dedekind self-map isomorphic to (w, s,0).

This idea can be expressed more simply using the concept of a category.”® A
category is a pair (O, M), where O is a collection of objects and M is a collection
of morphisms, satisfying the following:

(1) Each morphism f € M has a domain and a codomain, written dom f, cod f,
respectively, both belonging to O; in the familiar way, if A = dom f and
B =cod f, we write f : A — B.

(2) Morphisms can be composed: If f : A — B and g : B — C both belong to
M, then there is another morphism go f: A — C that also belongs to M;
moreover, composition is associative: ho (go f) = (hog)o f.

(3) For each object A € O, there is an identity morphism 14 : A — A, which
has the following two properties: For all f : X — Y in M, 1y o f = f and
folx = f. We often denote 14 by id4.

A simple example of a category is Set, which has all sets as its objects, and all
functions between sets as its morphisms. If we denote the collection of all functions

53Gee [2] and [25] for good introductions to category theory.
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defined on a set in V by V<V, then®® Set = (V, V<Y NV). Recall that it is convenient
at times to let V' denote the universe of all sets for the theory ZFC — Infinity—a
universe in which existence of an infinite set is not postulated. Whether we are
letting V' denote the full universe of sets modeling all of ZFC set theory, or letting
V' be a universe for ZFC — Infinity, we think of the category Set to be defined in
this same way, with objects being the sets in V' and morphisms, the functions in V.

Another very different example is the category Nat, whose objects are the natural
numbers 0, 1,2, ... and whose morphisms are pairs (m,n) of natural numbers for
which m < n. If S = {(m,n) € w xw | m < n}, then Nat = (w,S). Notice that
in this case, “morphisms” are nothing like the usual concept of functions, but they
do satisfy the requirements mentioned in the definition of categories.’® Finally, a
category of primary interest to us in this paper is Self Map, whose objects are
Dedekind self-maps and whose morphisms are Dedekind self-map morphisms.

Checking that the requirements for a category have been met for each of our
examples is straightforward, and we shall assume that this verification has been
done.

A concept that we have already defined in particular cases, but which is best
formulated in the language of category theory, is isomorphism. In any category
C=(0O,M),if A,B € O, an isomorphism from A to B is a morphism f € M
with the property that there is another g € M, g : B — A, with f o g = idp and
go f =1ida. In Set, the isomorphisms are the bijections. In Nat, two objects are
isomorphic if and only if they are equal. And in Self Map, the isomorphisms are
precisely the Dedekind self-map isomorphisms.

The concept we wish to introduce at this point is that of an initial object. An
initial object in a category is the “smallest” object of the category. We give the
definition: An object I in a category C = (O, M) is initial if there is exactly one
morphism from I to each object X in O. In Set, §) is initial because there is just one
map (the empty map) from () to any other set. In Nat, 0 is initial because 0 < m
for all m € w. Now, with this new concept in hand, it is easy to see that (w,s,0) is
an initial object for Self Map. In fact, Theorems 20 and 26 can be summarized as
follows, using this new concept:

Theorem 26.

(1) (w,s,0) is initial in the category Self Map.
(2) Any object (U, k,u) of Self Map that is initial is Dedekind self-map isomorphic
(hence Self Map-isomorphic) to (w, s,0).

54The curious reader may wonder why the collection of morphisms for Set is V<Y NV rather
than simply V<V. The reason is that it is possible to devise a function f defined on some set
X € V that is not itself a member of V. We will see an example at the end of this paper.
Such functions are necessarily not definable in the universe, nor derivable from the axioms of set
theory, and hence do not properly belong to Set, which must be viewed as a (definable) class.
Moreover, the range of such functions is not itself a set, so it does not make sense to include them
as morphisms. Nevertheless, such undefinable functions play an important role in the theory of
sets (but not so much in the category of sets); see the footnote on p. 183 for an example.

557 is helpful to think of a morphism f : A — B in a category as a directed edge in a directed
graph. One could have directed graphs in which such edges are indeed functions, and other graphs
in which they are not. It can be shown that any category is a directed graph with additional
properties.
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(3) Any object (U, k,u) of Self Map that is Dedekind self-map isomorphic (hence
Self Map-isomorphic) to (w, s, 0) is initial.

Proof. Part (1) is a restatement of Theorem 20. Part (2) is a restatement of The-
orem 26(2). Part (3) is a restatement of Theorem 26(1). OJ

Our reasoning so far has shown that, given a Dedekind selfmap j : A — A
with critical point a, if we form in A the smallest j-inductive set W, then W =
{j"(a) | n € w}. We have also just seen that (W, j [ W, a) is initial—a structural
duplicate of (w,s,0). If W is defined as the smallest j-inductive set, then we will
call (W,j | W,a) (or, by an abuse of notation, W itself) the initial object generated
by j.

We have also shown that 7 = 77" : w — W is a map that lists the elements of
W: For all n € w, 7(n) = j™(a) = j(4(...((a))...)) (where the right hand side of
the expression consists of n applications of j to a). We will call 7 the canonical
enumeration of W. Recall that 7 is itself a Dedekind self-map isomorphism from
(w,5,0) to (W, [ W,a).

Our results in this section lead to important characterizations of the notions
of “infinite set” and “set of natural numbers.” We began our discussion with an
effort to show that the Axiom of Infinity could be formulated as the assertion that a
Dedekind self-map exists. We showed that, without reliance on the natural numbers
(defined in the usual way), the set w of natural numbers could be derived, using just
a Dedekind self-map in conjunction with the other axioms of ZFC. These efforts led
not only to a derivation of w but also a characterization of those Dedekind self-maps
that are in every respect, up to notational differences, equivalent to w together with
its successor function.

Speaking philosophically, we have given evidence for the following two conclu-
sions:

1

(1) The “underlying reality” of infinite sets is the concept of a Dedekind self-
map.

(2) The “underlying reality” of the set of natural numbers is the concept of an
initial Dedekind self-map.

In particular, every Dedekind self-map j : A — A with critical point a generates
a blueprint for the set of natural numbers, in the form

W= {aaj(a)aj(j(a))a .- } C A
Indeed, j [W : W — W is itself an 4nitial Dedekind self-map, isomorphic to s :
w — w and naturally embedded in every other Dedekind self-map.
We consider next the dual of a Dedekind self-map. Dedekind/co-Dedekind pairs
will be central to our formal definition of a blueprint.

12. DEDEKIND/CO-DEDEKIND DUALITY

In our effort to capture a deeper meaning of the “mathematical infinite” in our
Axiom of Infinity, we isolated the concept of a Dedekind self-map. This concept
gives mathematical expression to one end of a polarity that characterizes the Infi-
nite, according to the ancient wisdom, namely, the dynamics of expansion to the
infinite from a singularity. We have seen that this expansion takes place, for a given
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Dedekind self-map j : A — A with critical point a, by repeated applications of j to
its critical point, producing the infinite sequence a, j(a), j(j(a)),....

The other half of this polarity, is, according to the ancient view,”% the dynamics of
collapse, by which the vast diversity returns to the point from which it originates.>”

56This theme is prevalent in the eternal wisdom found in ancient texts. Maharishi [47] remarks:

The Vedic theme of education cherishes this aspect of gaining knowledge in the
word Nivartadhwam, which means ‘return.” From point to infinity and from
infinity back to the point is the path of gaining knowledge (p. 42).

Maharishi explains that the unfoldment of diversity from within pure consciousness simultane-
ously involves a return to pure consciousness through “self-referral loops”; this is the mechanism
by which expressed values remain connected to their source. As T. Nader [57] explains:

This is how Rk Veda and the whole Vedic Literature emerge within the pure Self,

Atma, in its self-referral quality, expressing, transforming, expanding, silence

and dynamism, sounds and the gaps between sounds; always coming back to the

source via the loops at the basis of the structuring dynamics of pure knowingness

(p. 42).

Indeed, according to Maharishi [57, p. 25|, there is a part of the Vedic Literature that is

responsible for expansion and another that is responsible for return. In “Fundamental Principles
of Maharishi Vedic Science,” P. Oates [58] remarks

In addition to the balance maintained through the unfolding of opposite quali-
ties, the structure of the self-referral loops of Vedic Literature reveals that the
first three qualities of each loop of Vedic Literature in effect emerge from Atma,
from Unity, and unfold through Rishi, Devata, and Chhandas into its diverse
expressions, while the second set of three aspects of Vedic Literature reveals
the process which connects the unfoldment of qualities with its source, through
the return path, or self-referral feedback loop, from Chhandas, Devata, to Rishi
and back to Atma, or Unity (p. 127).

57Continuing the previous footnote, we mention here that this theme of return is an essential
characteristic of the dynamics of the source according to Laozi. In the Tao Te Ching [23], we read:

Returning is the motion of the Tao (v. 40).
and

Something mysteriously formed,
Existing before heaven and Earth.

In the silence and the void,

Standing alone and unchanging,

Ever present and in motion.

It is the mother of ten thousand things.
I do not know its name,

Call it Tao.

For lack of a better word, I call it great.
Being great, it flows.

It flows far away.

Having gone far, it returns (v. 25).

Finally, we mention the fact that Plato and the Neoplatonists recognized these fundamental
dual tendencies of the One. For instance, Plotinus, the founder of the Neoplatonic school, writes
[64]:

By a natural necessity does everything proceed from, and return to unity; thus
creatures which are different, or even opposed, are not any the less co-ordinated
in the same system, and that because they proceed from the same principle
(p. 1077).
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In a rather natural way, these dynamics are expressed mathematically using the
dual notion of a co-Dedekind self-map.

Let us say that an onto self-map h : A — A is co-Dedekind if the preimage
h=1(a), for some a € A, has two or more elements. Whenever a € A is such that
|h=1(a)| > 2, a will be called a co-critical point of h.

Recall that, whenever h : A — A is onto, there is, by the Axiom of Choice, a
function s : A — A whose range contains exactly one element from each preimage
h=(a), for a € A; such an s is called a section of h. Clearly, any section of an onto
map must be 1-1. Moreover, we have the following;:

Theorem 27. (ZFC — Infinity) Suppose A is a set. Then the following are equiv-
alent:

(1) There is a Dedekind self-map on A.
(2) There is a co-Dedekind self-map on A.

Proof. Suppose there is a Dedekind self-map j : A — A with critical point a. Let
ag € ranj. Define h: A — A by

h(x) = {ao if x € ran j,

y  otherwise, where y € A is unique such that j(y) = =.

Under the definition, we have that h(a) = ag since a is a critical point of j. It
is obvious that h : A — A is onto since even h [ ran j is onto. It follows that some
b= j(x) € ranj is also mapped by h to ag, since h | ranj is onto. Certainly b # a
since a ¢ ran j. Therefore, |h™1(ag)| > 2, so h is co-Dedekind.

Conversely, suppose h : A — A is co-Dedekind, and suppose s : A — A is a
section of h. We show s itself is Dedekind. We have already observed that s is 1-1.
Let 2 € A be such that [h=!(z)| > 2, and let u # v € A be elements of h™!(x).
Then one of u,v does not belong to the range of s; in particular, one of u,v is a
critical point of s. [J

The argument shows that any section s of a co-Dedekind self-map h: A — A is
itself a Dedekind self-map; moreover, for any co-critical point = of h, some element
of h=1(z) is a critical point of s.

We give an example to illustrate the “collapsing” effect that co-Dedekind self-
maps often have. Let us say that a set A is closed under singletons if, for all x € A,
we have {x} € A; more generally,”® A is closed under pairs if, whenever z,y € A,
{z,y} € A. As we now show, in studying co-Dedekind self-maps A — A, there is
nothing lost if we assume A is a transitive set closed under pairs:

Proposition 28. There is a co-Dedekind self-map on a set if and only if there is a
co-Dedekind self-map on a transitive set that is closed under pairs. Moreover, any
set that is closed under pairs admits a co-Dedekind self-map.

Proof. Suppose h : A — A is a co-Dedekind self-map on A. Let ¢t : A — A be a
section of h that is a Dedekind self-map with critical point a. We will lift ¢ to a

581f a set is closed under pairs, it is closed under singletons, since every singleton set {z} is
itself the pair {z,z}.
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Dedekind self-map t : B — B, where B is a transitive set that is closed under pairs
and that includes A.

Let S : V — V be defined by S(z) = {z}. By Theorem 25, there is a unique
7T:w — V such that 7(0) =a and 70 S = So 7.

w w
7 7
v = v
In particular, there is a set W whose elements are precisely a, {a},{{a}},.... In

other words,

W= {CL, {CL}, {{CL}}, x '}a
and S [W : W — W is initial. Moreover, (w,s,0) and (W, S [ W, a) are Dedekind
self-map isomorphic.

Claim. There is a Dedekind self-map ¢ : B — B, where B is a transitive set closed
under pairs, that includes A and such that £ [ A = .

Proof of Claim. We first observe that for any set C', we can obtain aset 7(C) 2 C
that is closed under pairs: Define C = Cy C C; C --- as follows: Let C; = [Cp)?
(where, for any set D, [D]? denotes the set of all unordered pairs from D), and,
in general,” C,, 11 = [Cp]%. Let 7(C) = U, e, Cn- If u,v € T(C), then for some
n € w, u,v € Cy, and so {u,v} € Cpy1 CT(C).

Now we build a set B as the union of the following chain:

A=A4CBCACB C---,

where, for each i € w, B; = 7 (A;) and A;41 is a transitive set that contains B;. If
u,v € B, then u,v € B; for some 4, and so, because B; = 7 (4A;), {u,v} € B; C B,
and so B is closed under pairs. Also, if u € v € B, then v € A; for some ¢ > 0, and
0, by transitivity of A;, u € A; C B; this shows B is transitive, as required.

We obtain a Dedekind self-map ¢ : B — B as follows:

b ifbe A,
t(b>_{t(b) if b e A.

It is easy to see that ¢ is a Dedekind self-map. [J

To complete the proof of the main clause of Proposition 29, we simply recall
that, by Theorem 28, whenever there is a Dedekind self-map B — B, there is also
a co-Dedekind self-map B — B.

59Formally, we are using Theorem 25 here. Define j : V — V by j(z) = {{u,v} |u € z and v €
z}; 7 is a Dedekind self-map. As in the Theorem, there is a unique 7 : w — V satisfying 7(0) = Cp
and j7 = Ts, where s : w — w is the successor function. Then define C,, = T(n) for each n € w.
This gives us the sequence (Cp, C1, Ca,...) as in the main text, and one may then form the union,
as described there.
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Finally, for the “moreover” clause, notice that if B is closed under pairs, it is
closed under singletons. If x € B, then W = {z, {z},{{z}}...} is a copy of w
in B, and so B is infinite, and therefore must admit a co-Dedekind self-map (by
Theorem 28 again together with the first half of Proposition 29). O

Example 1. (Generate/Collapse Duality) Let A be a transitive nonempty set that
is closed under pairs. We assume that A is a set “in the universe” in the sense that
it is governed by the usual axioms of set theory. (In particular, no element of A is
an element of itself.) Consider the self-map F : A — A, defined by%°

Fla) = {(/) ifr =10

y where y is any €-minimal element of x.

Because A is transitive, ran F' C A.5! We also observe that F is onto: Suppose
y € A. Then {y} € A, and clearly F'({y}) = y. Finally, suppose z € A and consider
the sets ¢ = {z} and y = {z,{z}}. The fact that no set is an element of itself
ensures that z,{z} are disjoint, and so F(y) = z = F(x). Thus, |F~(z)] > 1. We
have shown F' is a co-Dedekind self-map.

Let Sq = S[A: A — A, where, we recall, S(z) = {z} for all z € A. We show
that S4 is a section of F' by showing F o S =ida:

F(S(x)) = F({a}) = .

The dual notions of Dedekind self-map and co-Dedekind self-map are expressed
in the self-maps S4 and F. Certainly, S4 plays the role of generating a blueprint
for the natural numbers: Given a, Sa [ {a, Sa(a), S%(a),...} is an initial Dedekind
self-map. We wish to show that, conversely, F' plays the role of collapsing the values
of A to their point of origin.

We show that for every xz € A, there is n € w such that F(xz) = (. Suppose
not. Then for each n € w, F™(z) # (). It follows that the following is an infinite
descending €-chain:

...eF"(;C)anfl(:c)G~~-€F(CC)€CC.

Such chains cannot exist in the presence of the Axiom of Foundation. The result
follows.
Let €& = {i,, | n € w}, where, for each n, i, : A4 — A4 is defined by

moifn
(14) iAﬁ—{LAHnig

Here, f™ denotes the nth iterate of f. We have the following:

60The definition of €-minimal element of a set is given on p.25. Note that the definition of F’
relies on the Axiom of Choice: For each nonempty = € A, let Az C A be the set of all €E-minimal
elements of z. Let C : {Az | z € A,z # 0} — A be a choice function; that is, C(Az) € Ay for
each nonempty set z in A. Then, define F as follows: Whenever z # 0, F(z) = C(Agz).

6lcortain1y any €-minimal element of an element of A also belongs to A, by transitivity. We
verify here that ) € A: Let a € A be €-minimal in A (recall that A is nonempty). If a = 0, we are
done, so assume a # () and let € a. Since A is transitive, x € A, but this contradicts the fact
that a is €-minimal in A. Therefore, the only possibility is that a = ), as required.
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Proposition 29. Suppose A is a transitive set that is closed under pairs. Let

W ={0,{0}, {{0}},...} C A.

(1) For every x € A—in particular, for every x € W —there is i € £ such that
iW(F)(z) =0.

(2) For every x € W, there is i € € such that i(Sa)(0) = .

The proposition indicates how every element of A is “returned to its source” via
the interplay of F' and a naturally occurring set £ of functionals defined over A.
Likewise, through the interplay of S4 and £, we also see once again in the present
context how a blueprint for the natural numbers is generated. In summary, the
dual self-maps S4 and F' play the roles, respectively, of “generating a blueprint”
and “returning elements to their source.”

The functionals belonging to the class £ in this example have a number of nice
properties that will be useful for us to consider when we formulate a more precise
version of the notion of a “blueprint.”%?

Definition 6. (Weakly Elementary Functionals) Let BZ = {f | f : B — B} and
suppose S is a collection of functions. A functional i : B® — S is said to be weakly
elementary relative to B if it has the following properties (a)—(g):
(a) If g is 1-1, then i(g) is also 1-1; in fact, if g is a Dedekind self-map, then
i(g) is also a Dedekind self-map.
(b) If g is onto, then i(g) is also onto; in fact, if h is a co-Dedekind self-map,
then i(g) is also a co-Dedekind self-map.
(c) If g preserves the empty set (terminal objects), then i(g) preserves the
empty set (terminal objects).
(d) If g preserves disjoint unions, then so does i(g).
(e) If g preserves intersections, then so does i(g).
(f) If g preserves membership—that is, « € y implies g(z) € g(y) for z,y in the
domain of g—then so does i(g).
(g) If g reflects membership—that is, whenever x,y € dom g and g(z) € g(y),
then x € y—then so does i(g).

It is a straightforward exercise to show that each i,, € £, as in definition (44), is
weakly elementary.

62This notion of “weakly elementary functional” is a simplification of the more technical concept
that is needed in a more rigorous treatment. The concept that is needed is Yg-preserving (see

[17):

Definition 5. Suppose C, D are sets, each equipped with binary relations E, R, respectively.
A function f : (C,E) — (D,R) will be called So-elementary if, for every SZFC e-formula
d(x1,. .. zm) and all ¢1,...,em € C, ¢ CE) (c1, ... em) & ¢ P (f(c1),. .., f(em)) (as usual, it
is understood that F interprets € in C and R interprets € in D). Let S be a nonempty collection of
functions C' — D. Supposei : S — T is a functional defined so that for each f € S, i(f) : C’ — D'.
Suppose also that C’, D’ are equipped with binary relations E’, R’, respectively. We shall say that
i is Yo-preserving if, whenever f € S is ¥p-elementary, then i(f) is also Yg-elementary.

To see the connection to the previous example, let Sy = Sy rW : W — W. We can define a
binary relation E on W as we did earlier that satisfies x Ey if and only if one can obtain y from =
by applying Sy, at most finitely many times to z: y = Sy (Sw ... (Sw(z))...). Then it is easy
to verify that each of the functionals i, € £ is Yg-preserving.
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As we shall see, the concept of a “blueprint” appears naturally in the context of
large cardinals, and weakly elementary functionals play an important role in that
context. In the next section, we make the notion of a blueprint, suggested by our
results here, more precise.

13. BLUEPRINTS GENERATED BY A DEDEKIND SELF-MAP

In this section, we look more deeply into the concept of a blueprint and give
a more formal treatment of blueprints that arise from Dedekind self-maps. This
formal treatment will generalize well to broader contexts and will provide further
evidence of the rich foreshadowing of large cardinals suggested by the concept of a
Dedekind self-map.

Before diving into the formal treatment, we discuss the reason for going to the
trouble of providing a rather technical account of the idea of a “blueprint.”

We began our study of Dedekind self-maps with the intention of finding a way
to express the existence of an infinite set in the universe in a way that provided a
fuller intuition about the nature of the infinite in mathematics. The hope was that
such an intuition could provide the sort of insight that would suggest solutions to
the Problem of Large Cardinals: Is there a “right way” to think about the Infinite
that suggests that large cardinals really do exist?

Ancient traditions of knowledge suggest that the sequence of natural numbers—
and indeed, the unfoldment of any multiplicity—has a source. In Maharishi Vedic
Science, that source is Maharishi’s Absolute Number; for Pythagoras, it was the
Number of numbers; for Proclus, it was a divine number united with the One; and
for Laozi, it was Tao. The QFT perspective for dealing with classes of discrete
particles suggests that this source is an unbounded quantum field and that particles
are precipitations of the field.

Applying these perspectives to mathematical foundations and the quest for a
new angle on the Axiom of Infinity, we considered the possibility that the discrete
values that make up infinite sets—particularly, the set of natural numbers—should
be considered to be “precipitations” of some kind of “field.” A realization of this
intuition is the concept of a Dedekind self-map j : A — A with critical point a: The
set A represents the unbounded “field” whose dynamics are represented by j and its
interaction with a. Moreover, its “precipitations” a, j(a), j(j(a)), ..., arising from
repeated application of j to its critical point, turned out to form, in a precise sense,
a blueprint for the set of natural numbers (Theorems 11— 14).

These discoveries provide a degree of confirmation that the intuitions obtained
from ancient texts, and also from quantum field theory, truly can be realized in a
mathematical context, and do indeed bear fruit.

Motivated by this success, we seek to develop a more precise mathematical def-
inition of “blueprint” so that, as we explore generalizations of the concept of a
Dedekind self-map, we will be able to accurately identify blueprints if and when
they arise. We would expect, based on what we have seen so far, that a character-
istic of scaled versions of Dedekind self-maps—which would presumably generate
larger types of infinities—would, like the Dedekind self-maps we have seen so far,
give rise to blueprints for some sort of interesting sets.
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As we formulate a mathematical definition of “blueprint,” we will continue to
be guided by the insights of ancient traditions of knowledge. To this end, we will
look more closely at conceptions of blueprints described by these traditions and
attempt to catalog characteristics common to all approaches. We will use these
results—just as we used ancient insights about a possible “source” of the natural
numbers—to guide our mathematical formulation. Having obtained a satisfactory
definition of “blueprint,” we will then examine Dedekind self-maps in a broader
context, and check whether the self-maps we encounter do indeed generate this
kind of blueprint. Our hypothesis will be that those that do are the ones that will
yield the results we are seeking: an account of large cardinals and, possibly, even
an account of all sets as well.

We turn now, therefore, to a brief account of “blueprints for creation,” according
to several ancient traditions of knowledge. We also say a few words about how the
QFT world view is related to our formulation of blueprints.

13.1. Blueprints According to the Ancients. We examine the concepts of blue-
print described by the Vedic tradition of knowledge, represented by Maharishi Vedic
Science; by ancient Chinese philosophy, represented by Laozi and the I Ching; and
by the Platonic tradition in the West.

Maharishi Vedic Science

In Maharishi Vedic Science, the blueprint of creation is the Veda. For instance,
in [58], we read:

The totality of all the laws is the Veda; or, expressed from another
perspective, Veda is the “root of all laws.” Veda is referred to as
a blueprint of creation, but Veda is not merely a description of the
mechanics of intelligence in motion within itself; the self-interacting
dynamics of consciousness generate Veda and therefore may be seen
as the essence—the source of the laws which give rise to the infinite
diversity of creation (p. 122).

In another passage, Maharishi further describes the role of Veda as a blueprint.
Citing Maharishi, R.K. Wallace [70] writes,

Maharishi describes the four Vedas as “a beautiful, sequentially
available script of nature in its own unmanifest state, eternally func-
tioning within itself, and, on that basis of self-interaction, creating
the whole universe and governing it” (p. 218).
As mentioned earlier, Maharishi [50, pp. 52-53] explains that there is one verse
in the Rk Veda (1.164.39) that describes the way in which the Veda is built up.

Richo akshare parame vyoman
yasmin deva adhivishve nisheduh

The verses of the Veda exist in the collapse of fullness (the kshara of
3T (A)) in the transcendental field, in which reside all the Devas, the
impulses of Creative Intelligence, the Laws of Nature responsible for
the whole manifest universe.
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The hymns of the Veda arise in the collapse of wholeness, of totality—represented
by the first letter of Rk Veda, ‘A’—to its own point value—represented by the
second letter of Rk Veda, ‘K.” Within AK, therefore, is contained all the structuring
dynamics underlying the full unfoldment of Rk Veda and all the Vedic Literature,
and from these, the entire manifest universe.

The successive unfoldment of the hymns of the Rk Veda proceeds according to
Maharishi’s Apaurusheya Bhashya: From the first letter ‘A’ emerges the first syllable
“AK,” which is a fuller elaboration of the dynamics within ‘A.” From “AK” emerges
“Agnim,” a still fuller elaboration. And then emerges “Agnimile,” then the first
pada, first richa, first mandala, the entire Rk Veda, and the entire Veda and Vedic
Literature [45, p. 636].

As we mentioned before, the Veda expands in terms of self-referral loops so that
diversification always remains connected to its source. This means that expansion
and collapse (or return) are always occurring. Likewise, on a different scale, the
Veda as a blueprint for creation is equally responsible for the return of manifest
existence to its source:

Over and above this, the proof of the practical effect of the Ab-
solute Number in maintaining mathematical precision in the or-
derly evolution of the individual and the universe is the discov-
ery of the building blocks of the Absolute Number—the Veda and
Vedic Literature—in the human physiology, which has given us the
complete, sequential development of the unmanifest into the man-
ifestation of the whole universe, and has completed the cycle of

the return of the manifest universe to the state of the unmanifest
Absolute—the Absolute Number [45, pp. 617-8].

How, then, does this blueprint actually give rise to manifest existence? Maharishi
[45, p. 589] explains that this final step is due to a principle contained within the
Veda itself: Vivart. Maharishi defines Vivart as the principle that causes one thing
to appear to be something else [45, p. 589].

The principle of Vivart makes the unmanifest quality of self-referral
consciousness appear as the Veda and Vedic Literature, and makes
the Veda and Vedic Literature appear as Vishwa (pp. 377, 589).

Ancient Chinese Philosophy

Having reviewed points from Maharishi Vedic Science about the characteristics
of the Veda as a blueprint, we turn to the ancient wisdom of China, represented
primarily by the I Ching and the work of Laozi. In the Tao Te Ching, Laozi describes
the unfoldment of manifest existence from Tao; repeating a citation mentioned
earlier ([23]), we find the following passage:

The Tao begot One.

One begot Two.

Two begot Three.

And Three begot the ten thousand things (v. 42).

Each level of existence unfolds according to its own laws, but all depend on Tao,
which governs itself according to its own nature [67]:
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Mankind depends on the laws of Earth

Earth depends on the laws of Heaven

Heaven depends on the laws of Tao

But Tao depends on itself alone.

Supremely free, self-so, it rests in its own nature (v. 25).

The Tao Te Ching discusses the full range of unfoldment of Tao. Contained
within the wholeness that is Tao, there is wuji (Limitless) and youji (Limited);%3
both exist as possibilities, and together represent a dynamic wholeness, tai chi,
represented by the familiar tai chi symbol that displays these two principles joined
as one (Figure 6).

FIGURE 6. Tai Chi, One, Wholeness

The wholeness tai chi—this unity—is what is intended by One in verse 42 men-
tioned above. The I Ching declares [1, p. 14] that all things emerge from this
primal unity. One can say that all things arise from Tao; one can also say that tai
chi arises from Tao and all things arise from tai chi. Indeed, it is likely that this is
the distinction that is being made in the following verse in the Tao Te Ching:

Tao is both Named and Nameless.
As Nameless, it is the origin of all things.
As Named, it is the mother of all things ([67, v. 1]).

The two possibilities that form this primal unity are sometimes referred to as
“primal mother” and “primal father”; indeed, Laozi refers to “primal mother” in
several passages of Tao Te Ching. In the following passage, Laozi expresses the idea
that the One is barely distinguishable from Tao itself, using “primal mother” to
name the primal unity [23]:

It is the woman, primal mother.
Her gateway is the root of heaven and Earth.
It is like a veil barely seen (v. 6).

The potential for Two inherent in tai chi starts to manifest as an actual two,
yin and yang, named in the I Ching [1, p. 2] the “Receptive” and the “Creative,”
respectively. Because Two is to be seen as remaining unified, yin and yang are to
be appreciated as a single principle, called the liang yi (“two as one”) [8, p. 21].

Two is the starting point for the emergence of the field of change that arises from
the interaction of yin and yang. In the Yellow Emperor’s Internal Classic (Hudngdi
Néijing) one reads, “The entire universe is an oscillation of the forces of Yin and
Yang” [8, p. 19].

63See for example the Wikipedia article http://en.wikipedia.org/wiki/Bagua.
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Therefore, in this ancient wisdom, the first stage of manifestation is the One, tai
chi, which, as it begins to “sprout,” becomes the liang yi, the principle of yin and
yang, and this principle serves as the beginning of the unfoldment of all diversity.

The field of change itself, which emerges from liang yi, and which is the domain of
the I Ching, is seen as the expression of unchanging archetypes, variously described
as forms, images, or ideas [72]:

[In Laozi’s and Confucian teachings] every event in the visible world
is the effect of an “image,” that is, of an idea in the unseen world.
Accordingly, everything that happens on earth is only a reproduc-
tion, as it were, of an event in a world beyond our sense percep-
tion.... The holy men and sages, who are in contact with those
higher spheres, have access to these ideas through direct intuition
and are therefore able to intervene decisively in events in the world.

The blueprint of creation, therefore, from the perspective of I Ching, is this higher
world of images. These images originate from the Creative principle (yang) and are
nurtured into being by the Receptive principle (yin) [1]:

In the Cosmic Mind, the image arises. The arising of the image was
seen by the Chinese as the action of Yang; therefore, in the I Ching,
Yang is called the Creative. Still, it is only half of the complemen-
tary whole. Its other half is Yin, its opposite and complementary
force, that in the I Ching is called the Receptive. The image offered
by Yang is received and nurtured by Yin, bringing it into being.
The spin-off of this interaction was seen as an ongoing Creation,
and the ever-moving Wheel of Change (p. 15).

Moreover, the first of these images within Cosmic Mind—the first impulse—is
self-awareness, awareness of its own nature [8, p. 19].

Therefore, the structure of I Ching, unfolding from One, and giving full expres-
sion to Two, may be understood to be the structure and design of the first principles
of the universe.

FIGURE 7. Gua #63: Water Over Fire

The I Ching is composed of 64 gua (referred to in the West as hexagrams). An
example of one such gua is Figure 7.

Each gua is built as a combination of two primary gua (called trigrams in the
West), stacked one upon another; there are 8 primary gua (Figure 8).

The primary gua are built from two fundamental components (Figure 9), a broken
line and an unbroken line. The broken line represents yin and the unbroken line
represents yang. The 8 primary gua give expression to all possible ways yin and yang
may interact, through three steps. The 64 gua give fuller elaboration of these 8. The
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== == Earth - The Receptive

Thunder - The Arousing

== == Mountain - Keeping Still Fire - The Clinging

= Water - The Abysmal

Lake - The Joyous

= Wind - The Gentle Heaven - The Creative

FIGURE 8. Primary Gua

FIGURE 9. Yin and Yang in I Ching

64 gua, representing the fundamental set of archetypes within the higher realm—
the “unseen world”—constitute a map or blueprint of manifest existence. Taoist
scholar Stephen Chang, discussing the 64 gua as an “evolutionary” unfoldment of
the fundamental liang yi, explains this point as follows [8, p. 21]:

Taoists have traced the “evolution” of the Liang Yi into a “blue-
print” of the universe, describing all levels of transmutation in the
universe; from creation through growth, maturity, decline, dissolu-
tion, and re-creation (p. 21).

The Tradition of Plato and the Neoplatonists

As our final example of an ancient teaching about the blueprint of manifest
existence, we consider the work of Plato, supplemented by commentaries from the
Neoplatonic tradition. We begin with a quick overview.

In Plato’s philosophy, the ultimate reality, the Absolute, is designated “the One”
and also “the Good.” The One contains the potential for Two; this potential was
called by Plato in his lectures in the Academy the Indefinite Dyad [59]. Through
interaction between the One and the Indefinite Dyad, Two emerges, remaining
unified through the mechanism of continuous geometric proportion. From Two,
the first Triad emerges (described by one Neoplatonist as intellect, intellection,
intelligible), from which emerge multiple triads, and, ultimately, the intelligible
world of eternal, unchanging forms; these provide a template for the creation of the
sensible world. Finally, a primary force, called the Demiurge in Plato’s Timaeus,
uses the forms to produce the objects of the material world. In Plato’s philosophy
therefore, the blueprint of manifest existence is the world of forms, spawned by the
ultimate principle, the One. The rest of this subsection is devoted to an elaboration
of these points.

To introduce Plato’s Good and his world of forms, we begin with Plato’s own
description of the Good, taken from his classic, The Republic [30]:
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The sun, I presume you will say, not only furnishes to visibles
the power of visibility, but it also provides for their generation and
growth and nurture, though it is not itself generation.

Of course not.

In like manner, then, you are to say that the objects of knowledge
not only receive from the presence of the Good their being known,
but their very existence and essence is derived to them from it,
though the Good itself is not essence but still transcends essence in
dignity and surpassing power (509b, p. 744).

According to Plato, then, the Good gives rise to the intelligible world of forms,
but the Good itself is not a form, but beyond all forms, beyond even all essence.
What then are the forms, and how are they related to the visible world?

Plato’s forms are fundamental archetypes or templates on the basis of which the
changeable manifest world is constructed.’* Plato cites as examples of forms the
form of virtue and geometric forms, such as a circle. The form of virtue is to be
understood as the archetype by which we recognize a great variety of behaviors,
arising in an endless variety of contexts, as instances of virtue. Likewise, geometric
forms, like a circle, represent archetypes of another kind: For instance, though
no one has ever seen in the physical world a perfect circle, it is by virtue of the
form of a circle that the round objects that we encounter in physical experience are
recognized as approximations of a circle. In Plato’s dialogue, The Phaedo [30], he
makes it clear that the forms are unchangeable, eternal, beyond sense perception,
of divine nature, and the cause of the multiplicity of beings, each shaped according
to the parent form’s nature.

In the Republic, Plato provides a diagram, called the Divided Line, to show the
relationships of these different levels of life [30]:

Suppose you have a line divided into two unequal parts, to rep-
resent the visible and intelligible orders, and then divide the two
parts again in the same ratio. . .in terms of comparative clarity and
obscurity (509d).

In Figure 10, the union C' U D represents the intelligible world, and the union
A U B represents the visible world in Plato’s Divide Line analogy. While section
C represents more concrete forms, for which we can form images, like geometric
objects, section D represents more abstract forms, not representable by images, and
standing for first principles, like Beauty, Justice, and Truth. Section B, the upper
portion of the visible world, consists of the objects and beings of the physical world
that ordinarily occupy our attention, while section A are the shadowy elements of
manifest existence, which he calls images; Plato gives as examples shadows and
reflections on various types of surfaces [30, p. 745].

In this overview of Plato’s philosophy, we see that Plato views the source of all
things, which he calls the One or the Good, as a pure unity, beyond all difference
and diversity. The One gives rise to the multiplicity of forms, which are eternal
unchanging patterns, templates, or archetypes, and constitute the intelligible world.
The manifest or “visible” world is then a realization of the forms in terms of physical

64A basic introduction to Plato’s theory of forms can be found in [6] and also in the online
article http://en.wikipedia.org/wiki/Theory of Forms.
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A
Fi1GURE 10. Plato’s Divided Line

existence. The world of forms provides us with Plato’s concept of a blueprint for
material existence.

We consider several other points about this blueprint. We first ask how Plato
understands that diversity can arise from the pure unity of the Omne. Like the
sages of ancient China, who saw within Tao the potential for two—Limitless and
Limited—so likewise did Plato see within the One, which he also termed on some
occasions the Fqual, a second principle, the Unequal. The Unequal was also called
by him the Greater and the Lesser, and also the Indefinite Dyad. The Unequal
had these other appellations since Unequal implies a two, one bigger and the other
smaller. These are “indefinite” because we cannot answer exactly how big or how
small. This aspect of Plato’s philosophy is expressed by one of the students of
the Academy, named Alexander, who makes this remark in his Commentary of
(Aristotle’s) Metaphysics, quoted in [59)]:

Thinking to prove that the Equal and Unequal [other names for One
and Indefinite Dyad] are first Principles of all things, both of things
that exist in their own right and of opposites. . . he assigned equality
to the monad, and inequality to excess and defect: for inequality
involves two things, a great and a small, which are excessive and
defective. This is why he called it an Indefinite Dyad—because
neither the excessive nor the exceeded is, as such, definite.

How then does a more concrete Two arise from the Indefinite Dyad, so that
diversity can emerge? Continuing Alexander’s quote, we find a major clue:

But, when limited by the One, the Indefinite Dyad, he says, becomes
the Numerical Dyad.

Recent research by Plato scholar Scott Olsen [59] suggests a concrete way to
understand these dynamics—in particular, a way to understand these words of
Alexander.

The first step of the analysis brings us back to Plato’s Divided Line (Figure 10).
In the initial partition of the line, how is the dividing point to be chosen? What
should be the ratio of the larger segment, representing the intelligible world, to the
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smaller, representing the visible world? Olsen makes a very strong case that Plato
had in mind the most “sublime” of ratios, the Golden Ratio,%° denoted ¢, whose
value can be found by computing the unique positive root of x2 — x — 1, resulting

in Y
14+V5
6= —5—.

This means that, in Figure 10, we have the following proportion:
(45) L:¢CUD):4CUD):¢AUB),

where L denotes the length of the whole line, and other lengths are specified using
the notation ¢; so, for example, £(C' U D) denotes the length of the segment C' U D.
In particular, since we are assuming these ratios are equal to the Golden Ratio, we
have:

(D) _ £(C)

we) )

65The Golden Ratio has been of great interest to mathematicians, scientists, artists, architects,
philosophers, and others for many centuries both because of its unique mathematical properties
and because of its perhaps unexpected appearance in such diverse areas as geometry, biology, art
and architecture, and even stock market analysis. Pythagoras considered this ratio to be a divine
proportion and argued that it can be found everywhere in nature, including the structure of the
human body. The proportion was used in Greek and Egyptian architecture, making its appearance
in the design of the Greek Parthenon and the Egyptian pyramids. During the Renaissance, the
author Fra Pacioli wrote a book, The Divine Proportion, that made a case for the belief that
this ratio was fundamentally divine. Leonardo da Vinci attached great significance to the Golden
Ratio, which he called the golden section, and he used this ratio explicitly in many of his most
famous paintings. Some pieces of classical music (for instance, by Bartok and Debussy) made
explicit use of the ratio. Johannes Kepler remarked: “Geometry has two great treasures: one is
the theorem of Pythagoras; the other the division of a line into extreme and mean ratio [golden
cut]. The first we may compare to a measure of gold; the second we may name a precious jewel”
(quoted in [29]). An introduction to some of the history and mathematics of the Golden Ratio
can be found in the Wikipedia article at http://en.wikipedia.org/wiki/Golden ratio.

The Golden Ratio arises by considering a line L, partitioned into a greater piece (G) and a
smaller piece (S):

G 5
&

L

If the pieces of the line bear the relationship
whole : longer :: longer : shorter,

in other words:

L:G:G:S,
then the ratio % is, by definition, the Golden Ratio, and a direct computation yields:

_1++5
¢=—F
Plato does not explicitly mention the Golden Ratio in his dialogues, but does strongly hint at

it; in his treatment of the five Platonic solids, viewed as the five elements at the basis of material
existence, he invites the reader to discover this ratio himself. See the discussion in [59]. It is
a mathematical fact that once one has in hand a ruler and compass construction of ¢, one can
construct all five Platonic solids. The students in Plato’s Academy seemed to be aware of this
fact, and also of Plato’s apparent need to avoid explicit discussion about it [59].
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Also, returning to Plato’s specifications of ratios given in the Republic (509d)

(see quotation above), we also have the following proportions:%°

(46) (CUD):U(AUB) :: (D) : £(C) :: ¢(B) : L(A).

Returning to our question about how the Indefinite Dyad could be transformed
into Two—the Numerical Dyad mentioned by Alexander—we study more closely
Alexander’s remark, cited earlier:

But, when limited by the One, the Indefinite Dyad, he says, becomes
the Numerical Dyad, mentioned earlier.

The meaning here (echoed by the work of Olsen) is based on another point raised
in the Timaeus. Plato remarks that, when there is a need to bring unity to differ-
ences, the technique is to find the mean between extremes; moreover, this technique
has a mathematical realization: The mean between extremes of two natural num-
bers a < c is the geometric mean of these numbers. Before elaborating further, we
examine Plato’s remarks on this point from the Timaeus [63]:

But two things cannot be rightly put together without a third; there
must be some bond of union between them. And the fairest bond is
that which makes the most complete fusion of itself and the things
which it combines, and proportion is best adapted to effect such
a union. For whenever in any three numbers ...there is a mean,
which is to the last term what the first term is to it, and again,
when the mean is to the first term as the last term is to the mean—
then the mean, becoming first and last, and the first and last both
becoming means, they will all of them of necessity come to be the
same, and having become the same with one another will be all one
(31b-32a, p. 1163).

Elaborating further, the geometric mean of a < ¢ is a third number b, with
a < b < ¢, for which the following proportion holds: a : b :: b : c—which may also
be written ¢ : b :: b : a. This proportion is called a geometric proportion, and the
number b is called the geometric mean of a and c¢. Such a proportion may also be
written in the form a : b : ¢ (or ¢ : b : a); in that case it is called a continuous
geometric proportion. Some easily verified continuous geometric proportions are
2:4:8and 3:9:27. Given positive natural numbers®” a < ¢, the geometric mean
of a, ¢ is always equal to v/a - c.

Therefore, in the Divided Line, equation (45) tells us that the geometric mean
of £(D) and £(A) is £(C), and recall that £(B) = ¢(C).

Since Plato is giving an account of the emergence of multiplicity from unity, and
since we have already seen from the quote from Alexander that the Numerical Dyad
arises from the Indefinite Dyad by virtue of the presence of One (being “limited”

66The fact that the lengths of B and C appear to be equal in Figure 10 is not accidental, but
rather a mathematical fact. It is not hard to show that whenever the proportions indicated in (46)
hold, it must be true that ¢(B) = ¢(C); the Golden Ratio plays no part in this calculation.

671t is important for this discussion that the two numbers are positive. For instance, there is
no geometric mean between 0 and 2 (the only candidate would be 0, but it is not the case that
0 < 0 < 2), and, if we try to compute the geometric mean between —1 and 2, we get the complex
number /2!
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by the One), it is natural to identify this geometric mean ¢(C) in the diagram with
One, so that we have ¢(C) = ¢(B) = 1.

Doing so completely determines the values of ¢(D) and ¢(A): Once we know
0(C) =1, it follows that

RSN IERSS

and we have ¢ : 1: % See Figure 11.

A

1/® | A

Fi1GURE 11. Plato’s Divided Line Mediated by ¢

Now One is the mean between the extremes of the Greater (¢) and the Lesser (%)
These two values, though distinct, are as mathematically tied to unity as possible

because, not only is it true that ¢ x % = 1, as is always the case with a pair of

reciprocals, but also ¢ — % = 1. It is easy to check that ¢ is the only positive real
number that has this second property.®®. And now, this Indefinite Dyad (¢, %),
“limited” in this way by 1, gives rise to the definite Dyad 2: 2=¢ 4+ 1 — %
Summing up, Plato’s answer to the question of how diversity emerges from the
One is this: First, the One contains within it the possibility of two, since the Unequal
can be located as a principle secondary to the Equal (recall that the Equal is another
name for the One), and the Unequal is to be understood as the Indefinite Dyad—
the possibility of “greater” and “lesser.” For the Indefinite Dyad to then manifest
as Two requires a dynamic relationship between the One and the Indefinite Dyad.
Study of the work of Plato and the extant documents from the Platonic Academy
suggests that the ratios in Plato’s Divided Line are all the Golden Ratio ¢; letting
the One play the role of the geometric mean of the two extreme sections A and D

68The computation follows from the fact that ¢ is the unique positive solution to 2 —z—1 = 0.
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of the diagram leads to the mathematical conclusion that the top section has length
¢, the bottom section has length % and the Divided Line reveals the continuous

geometric proportion ¢ : 1 : % Once it is seen that the Indefinite Dyad is (¢, %),
the concrete computation of Two follows immediately from the unique mathematical
properties of ¢.

These points suggest that, in a way, the Golden Ratio represents the dynamism
inherent in the One. Striking mathematical evidence for this point of view, beyond
what we have seen so far, is the following pair of mathematical equations:%°

¢ = \/1+\/1+\/T;
1
¢ = 1+-—q—.
1+1+1+1.._

Here we see that the Golden Ratio ¢ is the result of infinitary dynamics of 1 as it
interacts with itself.™

So far, we have given an elaborate discussion of how Plato conceives of the One
unfolding into Two. What happens after that?

In Plato’s dialogue Philebus, the Indefinite Dyad is referred to as bound, infinite,
mized, and also as symmetry, truth, beauty;”* and is described by the Neoplatonist
Simplicius [62], as intellect, intellection, intelligible.

This emergence of three within the Indefinite Dyad is, according to Neoplatonic
doctrines, further elaborated in groups of three, forming a vast hierarchy of intel-
ligence, remaining all the while unified with its source [56]. In this way, the entire
realm of forms arises.

Finally, we ask, what is the process by which the forms, the blueprint, take
shape as manifest existence? Plato addresses this point in the Timaeus, where he
explains [6, Part I] how the Demiurge, a fundamental principle of the intelligible

69Proofs can be found in [15].

701t is reasonable to identify the infinitary dynamics represented by ¢ with some kind of map-
ping. Define a map ¢int (whose domain and codomain we describe in a moment), which transforms
any number z to the number round(¢ - z):

@int () = round(¢ - x).
Computing a few values, we see that
(47) ¢int(1) =2, ¢int(2) =3, ¢int(3) =5,...

Let F = {1,2,3,5,8,...}, the positive distinct Fibonacci numbers. Recall that the Fibonacci
sequence is defined by Fop =0, Fy =1, Fy, = F,,_2 + F,,_1, and the first values are 0,1,1,2,3,5,8.
We may write F = {F}, | k > 2}.) The outputs of ¢ins, shown in the display (47), are the elements
of F, with its first element 1 omitted.

We now specify the domain and codomain of ¢in to be precisely F. Clearly ¢int is 1-1 and
the number 1 is not in its range. So ¢ins is a Dedekind self-map; indeed, as is easily shown, it is
an initial Dedekind self-map. Our earlier work shows, therefore, that ¢int : F — F is Dedekind
self-map isomorphic to s : w — w. In other words, ¢int can be seen as a blueprint for the natural
numbers. This result suggests in another way that the Golden Ratio ¢ has the “organizing power”
to transform 1 into the full, infinite sequence of natural numbers.

"See Thomas Taylor’s discussion of this division in his notes on the Parmenides [62].
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world,®molds the Receptacle—which may be understood as pure emptiness or pure,
unformed matter”—using the forms as a template. In the process, the Demiurge
intends that “all things should come as near as possible to being like himself” [6,
Part I, p. 217].

13.2. Blueprints and the QFT Perspective. Adopting the simplified view that
the manifest world is made of particles, we can say that the manifest world arises
from quantum fields since each type of particle arises as a precipitation of its own
type of quantum field [26, p. 31].

As a first try at framing the world of quantum fields as a “blueprint” in the sense
that we are discussing here, we can simply view the entire collection of quantum
fields—electron fields, quark fields, etc.—to be the constituents of the blueprint, just
as the entire range of forms in Plato’s philosophy was seen to be the blueprint in that
context. Pursuing the parallel between these approaches a bit further, we propose
that, as in Plato’s philosophy in which there is a natural hierarchy of forms ranging
from most abstract and universal to most concrete and specialized, so likewise there
is a kind of hierarchy of quantum fields.

The most “expressed” level of this hierarchy is the fundamental force and matter
fields: the electromagnetic, weak, strong, and gravitational force fields, on the one
hand, and the various lepton and quark matter fields, on the other hand. In the
1960s, the work by Glashow, Weinberg, and Salam demonstrated that, while the
electromagnetic and weak forces behave, at classical time and distance scales, very
differently (with very different gauge bosons), at a distance scale of 10716 cm, the
forces are identical; as a result of this discovery, the force is now referred to as the
electroweak force. Moreover, their work showed that it is the result of “spontaneous
symmetry breaking” that, at larger distance scales, these fields appear to be distinct.
Symmetries within the electroweak field—which are present only at a scale of 10716
cm or smaller—are not maintainable at larger distance scales where the available
energy is considerably less. Their work also resulted in a unification of apparently
distinct matter fields—the charged lepton fields and the neutrino fields.™

The next level of abstraction in this hierarchy aimed at a theory that could unify
the electroweak force with the strong force. The most successful theory of this
kind known today is referred to as the Standard Model, though there appear to be a
number of points about this theory that still need clarification.” At a distance scale
of 10729 cm, the Standard Model achieves unification of the electroweak and strong

72Thomas Taylor suggests, in his introductory remarks to Proclus’ Commentary on Euclid (68,
p. 5] that, in Plato’s theology, the Demiurge represents one of the ultimate forms—“the idea of
all things.”
73The Stanford Encyclopedia of Philosophy gives this account:
[The Receptacle is] a totally characterless subject that temporarily in its various
parts gets characterized in various ways. This is the receptacle—an enduring
substratum, neutral in itself but temporarily taking on the various characteriza-
tions. The observed particulars just are parts of that receptacle so characterized.
See http://plato.stanford.edu/entries/plato-timaeus/#6.
TSee [26], as well as the Wikipedia article http://en.wikipedia.org/wiki/Electroweak_
interaction.
75See [26] and the Wikipedia article on the Standard Model: http://en.wikipedia.org/
wiki/Standard Model.
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forces, as well as of many more matter fields, most notably the quark and lepton
fields. As with the electroweak unification, the observed differences between the
electroweak and strong forces also arise from spontaneous symmetry breaking [26].

The ultimate completion of this direction of unification would be a super-unified
theory, which would account for a single unified field unifying all four forces and all
matter fields. Over the past half century, many proposals for such a theory have
emerged. The most widely accepted approach replaces the zero-dimensional point
particles of quantum field theory with one-dimensional (or possibly higher dimen-
sional) strings, which “act like” particles. There are a variety of so-called superstring
theories, based on this concept; the “super” prefix indicates that the theories exhibit
a special kind of symmetry called supersymmetry. To understand supersymmetry,
we first note that there are two basic classes of elementary particles: bosons, which
have an integer-valued spin, and fermions, which have a half-integer spin. Each
particle from one group is associated with a particle from the other, known as its
superpartner. In a theory with perfectly “unbroken” supersymmetry, each pair of
superpartners would share the same mass and internal quantum numbers besides
spin. For example, there would be a “selectron” (superpartner electron), a bosonic
version of the electron, with the same mass as the electron. At ordinary time and
distance scales, supersymmetry does not exist; this implies that, assuming there
is an underlying superfield composed of superstrings, at a certain distance scale
(namely, the Planck scale, 10733 cm), the supersymmetry must be broken.”®

In the 1990s, it was demonstrated that there are only five viable superstring
theories. Then E. Witten made the remarkable discovery, in his development of M
Theory, that all five of these superstring theories are equivalent.””

We see that the pattern for unfolding this hierarchy of quantum fields, ranging
from the super-unified level to the level of classical time and distance scales, is in
each case spontaneous symmetry breaking. In each case, deep symmetries of natural
law that are lively at one scale are lost because of one of these transitions.

Finally, we ask, what is the mechanism by which quantum fields give rise to,
and destroy, the particles of the material world? The appearance of particles, ac-
cording to QFT, is due to the phenomenon of field collapse, by which infinitely
extended quantum fields appear as quanta—precipitates of the field—and by which
quanta “disappear.” The mechanism by which field collapse occurs is still not
known, but the fact that it does occur is an experimentally verified fact [5, p. 52ff].
In this sense then, QFT shares even this feature with the ancient perspective re-
garding blueprints, though details about the underlying mechanism are still being
researched.

13.3. Common Features of Blueprints. Our aim in this section so far has been
to give an account of the role of blueprints in the unfoldment of manifest life, as
described in several ancient traditions of knowledge, including in addition a few
points from QFT. These accounts are, in each case, an extension of the world
views discussed earlier concerning the source of natural numbers—world views that
suggested a direction as we sought an alternative, intuitively-rich formulation for

76See http://en.wikipedia.org/wiki/Supersymmetry.
77See the Wikipedia article http://en.wikipedia.org/wiki/M-theory.
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the Axiom of Infinity. As we seek to refine our New Axiom of Infinity further—to
find the “right” generalization of the concept of a Dedekind self-map—we wish to
cull from the ancient wisdom insights that could have a bearing on, and provide
direction for, this program of generalization.

To conclude these preliminary discussions, then, we catalogue some of the main
characteristics of blueprints for the universe that are common to each of the tradi-
tions we have considered.

(1)

Blueprint Arises from the Dynamics of One: The blueprint emerges se-
quentially from the internal dynamics of the One interacting with itself.
In Maharishi Vedic Science, this point is addressed by Maharishi’s Apau-
rusheya Bhashya: Starting from the first letter A of Rk Veda, the Veda
unfolds as successive elaborations of all that is contained in A, from A
to AK—representing a collapse of the unbounded value of wholeness to
its own point—to Agnim to Agnimile, and so on. In Chinese philosophy,
within Tao is seen the potential for two—the Unlimited and the Limited—
and Tao, appreciated from the point of view of this possibility for two is
tai chi. Then tai chi gives rise to the yin-yang principle liang yi, from
which the images of the cosmic mind are woven and, ultimately, nurtured
into being by the primal mother. For Plato, within the One, the Equal,
is seen the opposite principle, the Unequal, which represents the poten-
tial for Two, in the form of the Greater and Lesser also known as the
Indefinite Dyad, represented mathematically by the Golden Ratio ¢ and its
reciprocal. Interaction between the One and the Indefinite Dyad produce
Two. Since the Indefinite Dyad is itself a three-in-one (described for in-
stance as the unity of intellect, intellection, intelligible), it achieves fuller
expression, beyond Two, as Three, which in turn unfolds into multiple tri-
ads and ultimately the intelligible world of forms. Finally, in the world of
quantum field theory, the hierarchy of quantum fields mentioned earlier un-
fold from the super-unified level at the Planck scale (10733 c¢m) into more
and more diverse force and matter fields at ever larger time and distance
scales. This diversification is d