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§1. Introduction

The axiom I3(κ) was introduced by Kunen in [Ku2] and asserts that there is a limit ordinal

λ > κ and an elementary embedding j : Vλ → Vλ with critical point κ. In this paper, we are

concerned with forcing extensions that preserve I3(κ); in particular, those extensions in which the

new embedding extends, or “lifts”, the ground model embedding.

As is typically the case in forcing with large cardinals, the axiom ∃κ I3(κ) is immune to small

forcing. First, when the notion of forcing P is an element of Vκ (in the ground model V ), j can

always be lifted to ĵ : V [G]λ → V [G]λ in the standard way, by defining ĵ(ẋG) = j(ẋ)G. When the

notion of forcing P is an element of Vλ \ Vκ, this standard way of lifting the embedding fails [Co1],

but the axiom ∃κ I3(κ) is still preserved: Let n be such that P ∈ Vκn
, where κn = jn(κ). One can

obtain another elementary embedding k : Vλ → Vλ definable from j and having critical point κn

(see for example [Co2, Proposition 8.11]). But now, as before, k can be lifted in the standard way

since P ∈ Vκn
. Therefore, in the extension, the axiom ∃κ I3(κ) continues to hold, though we have

not in this case lifted the original embedding. Arguments of this kind are studied and elaborated

in a more general context in [Co1].

In this paper our concern is with forcing notions P ⊂ Vλ that do not belong to Vλ. We will use

a forcing of this kind to establish GCH or V = HOD inside V [G]λ in a model in which we also lift

the ground model embedding to V [G]λ → V [G]λ. We will use this general technique to obtain an

improved result about the consistency of V = HOD with an axiom WA, studied in previous work.

To state our target theorem, we first recall that Kunen [Ku2] showed there is no nontrivial

elementary embedding from the universe to itself (where the argument is formalized in Kelley-Morse

or Gödel-Bernays set theory). In [Co2] and [Co5], we began a finer axiomatic analysis of elementary

embeddings from a model of ZFC to itself by studying such an embedding as an interpretation of a

function symbol j in the language {∈, j}. For this analysis, we used as axioms the usual ZFC axioms

(for ∈-formulas), an axiom schema Elementarity asserting that j is an elementary embedding, and an

axiom Critical Point asserting that a least ordinal is moved by j. In [Co2], these axioms collectively

were given the name the Basic Theory of Elementary Embeddings, or BTEE. We showed that

ZFC + BTEE has consistency strength somewhat less than the existence of 0#. By adding to

BTEE all instances of Separation for j-formulas (formulas in which there is an occurrence of the

symbol j) — we call this schema Separationj — we obtain a much stronger theory. The axioms of

BTEE together with those of Separationj were named collectively the Wholeness Axiom or WA in

[Co2] and [Co5]. The axioms of WA are listed below:

The Wholeness Axiom

(1)φ (Elementarity Schema for ∈-formulas). Each of the following j-sentences is an axiom,

where φ(x1, x2, . . . , xm) is an ∈-formula,

∀x1, x2, . . . , xm

(
φ(x1, x2, . . . , xm) ⇐⇒ φ(j(x1), j(x2), . . . , j(xm))

)
;
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(2) (Critical Point). “There is a least ordinal moved by j”.

(3)φ (Separation Schema for j-formulas). Each instance of the usual Separation schema involv-

ing φ is an axiom (where φ is a j-formula).

The theory ZFC + WA is known [Co5] to have consistency strength strictly between that of

I3 (which asserts the existence of a nontrivial elementary embedding Vλ → Vλ, λ a limit) and the

existence of a cardinal that is super-n-huge for every n ∈ ω.

In [Co5], the theory ZFC + WA was used as a background theory for studying generalized

Laver sequences. A technical question related to generalized Laver sequences that later arose

in [Co4] was whether V = HOD is consistent with ZFC + WA. In [Co3], we showed that if

ZFC + “there is an I1 embedding” is consistent, then so is ZFC + WA + V = HOD. Seeking to

weaken the I1 hypothesis in this result, Hamkins [Ha1] showed that an axiom WA0, slightly weaker

than WA, is consistent with V = HOD. (Hamkins’ axiom WA0 is obtained from BTEE by including

just the Σ0 instances of Separationj as additional axioms.) More precisely, Hamkins showed that

if ZFC + WA0 is consistent, so is ZFC + WA0 + V = HOD.

It is still not known whether V = HOD is consistent with WA without additional hypotheses.

In this paper, we weaken the I1 hypothesis to I3. That is, we prove the following:

Theorem 1.1. If ZFC + ∃κ I3(κ) is consistent, so is ZFC + WA + V = HOD.

Our proof combines the techniques of [Ha1] and [Co3]. The theorem follows from a more

general result about lifting an I3 embedding j : Vλ → Vλ to V [G]λ → V [G]λ via certain types

of reverse Easton forcing iterations of length λ. The following is a precise statement of the main

result; the notions of adequate and j-coherent reverse Easton iterations will be defined in Section 2.

Theorem 1.2. Suppose that, in a countable transitive model M of a sufficiently large finite frag-

ment of ZFC, there is an I3 embedding j : Vλ → Vλ with critical point κ. Suppose that in M ,

Pλ ⊂ Vλ+1 is a j-coherent, adequate, reverse Easton forcing. Then there is a filter G that is

Pλ-generic over M for which j can be lifted to an embedding k : V
M [G]
λ → V

M [G]
λ .

As is usual in the approach to forcing that uses countable transitive models (see for example

[Ku1]), we start with a countable transitive model of a “sufficiently large finite fragment of ZFC,”

which consists of enough of the axioms of ZFC for all the arguments to go through. For the rest of

this paper, we will denote such a fragment ZFC∗.

In [Ha2] and [Co3], a (well-known) technique is given for lifting an I1 embedding Vλ+1 → Vλ+1

to V [G]λ+1 → V [G]λ+1 for the types of forcings mentioned in Theorem 1.2. In this approach, the

forcing notion Pλ is included in Vλ+1, and hence lies in the domain of the elementary embedding.

This fact makes it possible to define a master condition that can be used in the usual way to

establish that the lifting of j is well-defined. For I3 embeddings, this convenience is lost and some

of the arguments used in the I1 case do not go through.
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In [Ha1], Hamkins developed a different approach to lifting embeddings j : M → M for

sufficiently closed M , having the property that M =
⋃

n∈ω V M
κn

, where κ0, κ1, κ2, . . . denotes the

critical sequence of j. (In particular, he forces over models 〈M,∈, j〉 of ZFC + WA0.) Lifting an

embedding in this context was accomplished by alternately forcing and lifting to obtain a sequence

of embeddings

V M
κ0

[Gκ0 ]
i1−→ V M

κ1
[Gκ1 ]

i2−→ V M
κ2

[Gκ2 ]
i3−→ . . .

which leads to the conclusion that

V M
κ0

[Gκ0 ] ≺ V M
κ1

[Gκ1 ] ≺ V M
κ2

[Gκ2 ] ≺ . . . .

The final model N is obtained as the union of the V M
κn

[Gκn
], and the final embedding k : N → N is

obtained by piecing together the in. If, in the present context, one begins with a transitive model

M̄ of ZFC∗ in which there is an I3 embedding j : Vλ → Vλ, and one applies Hamkins’ argument

with M = V M̄
λ , it is not clear that the resulting N is a Vλ inside a forcing extension of M . This is

because Hamkins’ argument does not produce a final generic filter G; moreover, Hamkins’ model

N is not known to be a generic extension of the ground model in general.

In this paper, we steer a middle course to obtain Theorem 1.2. We obtain a kind of local master

condition that allows us to build a forcing extension M [G] for which each restriction of the master

condition belongs to G (though the master condition itself does not). This permits us to carry out

most of Hamkins’ arguments in such a way that the final lifting is of the form V
M [G]
λ → V

M [G]
λ .

We begin with a section on preliminaries to review known results and establish notation.

Section 3 is dedicated to the proof of the main result.

§2. Preliminaries

The axiom I3(κ) asserts that there is an elementary embedding j : Vλ → Vλ with critical point

κ, where λ is a limit. The critical sequence of such an embedding is the sequence 〈κ0, κ1, κ2, . . .〉,
where κ0 is the critical point of the embedding and κn+1 = jn+1(κ0) (and where jn+1 denotes the

n + 1st iterate of j under composition).

A forcing iteration Pλ is a reverse Easton iteration if direct limits are taken at all inaccessible

cardinal stages and inverse limits are taken at all other limit stages. A reverse Easton iteration is

adequate if it satisfies the following: Suppose the inaccessible cardinals are unbounded in λ. Let

in = inλ : λ → λ be defined by in(α) = least inaccessible > α. Then Pλ is adequate if for all

α < λ we have:

(1) |Pα| < in(α);

(2) ‖– Pα
Qα is α+-directed closed.

Furthermore, given a transitive model N of ZFC∗ for which Pα ∈ N for all α < λ and an

elementary embedding j : N → N with critical point κ < λ, Pλ is said to be j-coherent if,
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whenever κ ≤ α < λ, j(Pα) = Pj(α). (This is a slight weakening of the definition as it appears in

[Co3] and [Ha2] — here we do not require Pλ itself to be included in N — but the change does not

affect the truth of the theorems in that paper.) In this paper, the model N that we have in mind

will be of the form Vλ (inside another transitive model of ZFC∗).

The significance of adequate reverse Easton iterations lies in the following:

Proposition 2.1. Suppose λ is a limit of inaccessibles and Pλ is an adequate reverse Easton

iteration. Then for all α < λ

‖– αPαλ is α+-directed closed.

Proposition 2.2. Suppose λ is a limit of inaccessibles and Pλ is an adequate reverse Easton

iteration. Then forcing with Pλ preserves inaccessibles ≤ λ.

The proof of Proposition 2.1 is like [Ba, Theorem 5.5] though the hypotheses are somewhat

different. Proposition 2.2 is proved in [Co3].

For completeness, we review arguments from [Ha1], [Ha2] and [Co3], tailored slightly to the

present context, which show how we may obtain the result that V
M [G]
λ |= V = HOD after forcing

with an appropriately defined j-coherent adequate reverse Easton iteration. These results will allow

us to focus in the next section on j-coherent iterations without the added concern about how to

ensure V = HOD in the final model. We give outlines of proofs here; more details can be found in

[Ha1] and [Ha2] (for the GCH argument) and in [Co3] (for the V = HOD argument).

Theorem 2.3. Suppose M is a transitive model of ZFC∗ + ∃κ I3(κ), with witness j : Vλ → Vλ

having critical point κ. Then there is, in M , a j-coherent adequate reverse Easton iteration Pλ ⊆
Vλ+1 such that for any filter G that is Pλ-generic over M ,

V
M [G]
λ |= ZFC + GCH.

Proof. (Outline) Define the usual reverse Easton iteration Pκ for forcing GCH up to κ: For each

α < κ that is a cardinal in M [Gα], let Q̇α be a Pα name of least rank for the forcing that adds

a Cohen subset to α+. (Leastness of rank assists in the computation of the size of each Pα, to

establish adequacy.) In the usual way, the αth stage Pα forces “Q̇α is α+-directed closed”. A

straightforward computation shows that |Pα| < in(α).

Having defined Pκ, inductively define Pκn
, n ∈ ω, using the embedding j:

Pκn+1 = j(Pκn
).

Finally, define Pλ to be the inverse limit of Pγ , γ < λ. It follows that Pλ is an adequate, j-coherent

reverse Easton iteration, and

M [Gλ] |= ∀α < λ (2α = α+).
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It follows that

V
M [Gλ]
λ |= ZFC + GCH.

Now, combining Theorem 2.3 with Theorem 1.2, we can find a generic filter G so that GCH

holds in V
M [G]
λ and j lifts to V

M [G]
λ → V

M [G]
λ in M [G].

Theorem 2.4. Suppose M is a transitive model of ZFC∗ + ∃κ I3(κ), with witness j : Vλ → Vλ

having critical point κ. Then there is, in M , a j-coherent adequate reverse Easton iteration Pλ ⊆
Vλ+1 such that for any filter G that is Pλ-generic over M ,

V
M [G]
λ |= ZFC + V = HOD.

Proof. (Outline) Given that M is a transitive model of ZFC∗ + ∃κ I3(κ) with witness j : Vλ → Vλ,

we may assume, by the previous theorem, that GCH holds up to λ. We again define a reverse Easton

iteration Pκ, except here the forcing at each coordinate is a particular kind of Easton forcing. To

describe this forcing, we set up some initial notation: Let π : ON × ON → ON be the definable

bijection given by Gödel’s definable well-ordering of ON ×ON , having the property that for every

cardinal ν, π � ν × ν is a bijection from ν × ν onto ν. For each beth fixed point ν and each set

A ⊆ ν, we write A ∼ Vν if there is a bijection t : ν → Vν such that for all (β, α) ∈ ν ×ν, t(β) ∈ t(α)

iff π(β, α) ∈ A. (For any beth fixed point ν, one may always find a set A such that A ∼ Vν .) Given

a beth fixed point ν and a set A ⊆ ν with A ∼ Vν , we define our Easton function f = fν,A on

S = Sν,A = {γ : γ is a successor cardinal and ν = ων < γ < ων+ν} by setting, for each α < ν,

f(ων+α+1) =
{

ων+α+3 if α ∈ A
ων+α+2 if α �∈ A

Our Easton forcing, relative to (ν,A), will then be defined to be E(f) — the Easton forcing defined

from f (see [Ku1] or [Co3]). In particular, we define the nontrivial coordinates of the iteration Pκ:

For each inaccessible α < κ, let Q̇α be a Pα name of least rank for a partial order defined in M [Gα]

as follows: Pick A ∼ Vα with A ⊂ α, and let f = fα,A be the Easton function defined above.

Finally, let Q = E(f).

Having defined Pκ, we extend to Pλ as in the GCH argument by inductively defining Pκn+1 =

j(Pκn
), and letting Pλ be the inverse limit of Pγ , γ < λ. Pλ is easily shown to be an adequate,

j-coherent reverse Easton iteration.

Suppose G is Pλ-generic over M and let α be inaccessible in M . By Theorem 2.2, α must still

be inaccessible in M [Gα+1] and so GCH must still hold on the interval [α, λ). Therefore the Easton

function f = fα,A determines values of the continuum on its domain; in particular, for each γ < α,

γ ∈ A iff 2ωα+γ+1 = ωα+γ+3.

Thus, A is seen to be ordinal definable, and therefore, so is each element of Vα. By closure properties

guaranteed by adequacy, ordinal definability of the sets having rank < α is preserved in M [G]. It

follows that V
M [G]
λ |= ZFC + V = HOD. .
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Now we can prove Theorem 1.1 from Theorem 1.2 and Theorem 2.4:

Proof of Theorem 1.1. Suppose M is a transitive model of ZFC∗ containing an I3 embedding

j : Vλ → Vλ with critical sequence κ0, κ1, κ2, . . .. In M , let Pλ be the j-coherent adequate reverse

Easton iteration guaranteed by Theorem 2.4. By Theorem 1.2, there is a filter G that is Pλ-

generic over M for which j can be lifted to an embedding k : V
M [G]
λ → V

M [G]
λ . By Theorem 2.4,

V
M [G]
λ |= V = HOD. But since k is an I3 embedding in M [G], we have that 〈V M [G]

λ ,∈, k〉 |= WA,

as required.

§3. Main Result

In this section, we prove Theorem 1.2. We begin with a countable transitive model M of ZFC∗

in which there is an I3 embedding j : Vλ → Vλ with critical sequence κ0, κ1, κ2, . . ..

Let Pλ ⊆ Vλ+1 be, in M , an adequate, j-coherent reverse Easton iteration. Unlike the situation

in [Co3], Pλ is not included in the domain of j. We obtain a condition q ∈ Pλ in essentially the

same way in which a master condition is defined in [Co3] and [Ha1]. In particular, we obtain the

condition q inductively, satisfying the following:

Let Ġ be a name for a filter that is Pλ-generic over M , and let Ġκn
be a Pκn

-name for Ġ up

to κn.

(1) Let q �κ1 = 〈1̇, 1̇, . . .〉.
(2) For each n ≥ 1, let q(κn) ∈ Pκn,κn+1 be a name for a condition lying below all j(p)(κn)

for which p ∈ Ġκn
.

(3) For each n ≥ 1, let q � (κn, κn+1) ∈ Pκn,κn+1 be a name for a condition lying below all

j(p) � (κn, κn+1) for which p ∈ Ġκn

Parts (2) and (3) of the inductive construction can be done because each Pκn,λ is κ+
n -directed

closed in V [Gκn
], by Proposition 2.1. See [Co3] and [Ha2] for more details. One slight difference

in our approach here from that found in [Co3] and [Ha2] is that we have been careful to define q in

terms of conditions p that lie in an initial part of Pλ, rather than referring to arbitrary elements of

Pλ. This care is necessary because in the present context, elements of Pλ do not lie in the domain

of j, since an inverse limit is taken at the λth stage of the iteration. In particular, q itself is not in

the domain of j, and so it follows that q is technically not a master condition in the sense of [Co3]

and [Ha2]. However, as we will show, q retains the local properties of a master condition, and these

are enough to carry out the necessary argument.

Let G be Pλ-generic over M with q ∈ G. We may assume that, for each n, Pκn
⊆ V M

κn
. Note

that for each n, Gκn
is Pκn

-generic over V M
κn

. We define, in M [G], a sequence 〈i1, i2, i3, . . . , 〉 of

elementary embeddings

V M
κ0

[Gκ0 ]
i1−→ V M

κ1
[Gκ1 ]

i2−→ V M
κ2

[Gκ2 ]
i3−→ . . .
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as follows: For σ ∈ MPκn ,

in+1(σGκn
) = (j(σ))Gκn+1

.

We will show that in+1 is well-defined; the usual arguments (see [Je] for example) can then be

used to conclude that in+1 is elementary. First observe that for any p ∈ Pκn
and any σ, τ ∈ MPκn ,

p ‖–σ = τ implies j(p) ‖– j(σ) = j(τ),

because ‖– = ‖– κn
is definable in V M

λ . Therefore, it suffices to show that p ∈ Gκn
−→ j(p) ∈

Gκn+1 .

Because, in M , Pκn+1 ∼ Pκn
⊗ Pκn,κn+1 , we may write

j(p) = (p′, ṙ),

where

(3.1)n p′ ∈ Pκn
and 1 ‖– ṙ ∈ Pκn,κn+1 and ṙ = j(p) � [κn, κn+1).

Claim 1. If M |= j(p) = (p′, ṙ) and p ∈ Gκn
, then p′ ∈ Gκn

and ṙGκn
∈ Gκn,κn+1 .

Proof. Working in M , we proceed by induction on n ≥ 0. For n = 0, there is α < κ0 such that

supt(p) ⊆ α. It follows that supt(p) = supt(j(p)). Also, since for each β < α, p(β) ∈ V M
κ0

, it follows

that j(p) � κ0 = p �κ0, and so

j(p) = (p, 〈1̇, 1̇, 1̇, . . .〉),

and this completes the proof for n = 0.

Assume the result holds for n ≥ 0. Let p ∈ Gκn+1 and write j(p) = (p′, ṙ) where (p′, ṙ)

satisfies (3.1)n+1; that is, p′ ∈ Pκn+1 and 1 ‖– ṙ ∈ Pκn+1,κn+2 and ṙ = j(p) � [κn+1, κn+2). We first

show that p′ ∈ Gκn+1 . Let pn = p � κn ∈ Pκn
. Since p ∈ Gκn+1 , pn ∈ Gκn

. By the induction

hypothesis, j(pn) = (p′n, ṙn) where p′n ∈ Gκn
and (ṙn)Gκn

∈ Gκn,κn+1 . Therefore, we have

p′ = j(p) � j(κn)

= j(p � κn)

= j(pn) ∈ Gκn+1 .

Next, we show that ṙGκn+1
∈ Gκn+1,κn+2. There is s ∈ Gκn+1 with s ≤ p′ and s ≤ q �κn+1

(since both p′ and q �κn+1 ∈ Gκn+1). It follows that

s ‖– q � [κn+1, κn+2) ≤ j(p) � [κn+1, κn+2) = ṙ.

The result follows.

Claim 2. V M
κ0

[Gκ0 ] ≺ V M
κ1

[Gκ1 ] ≺ V M
κ2

[Gκ2 ] ≺ . . ..
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Proof. We first show that V M
κ0

[Gκ0 ] ≺ V M
κ1

[Gκ1 ]. Notice that the embedding i1 : V M
κ0

[Gκ0 ] →
V M

κ1
[Gκ1 ] extends j �V M

κ0
: V M

κ0
→ V M

κ1
. In particular, i1 is an elementary embedding with no

critical point. It follows that V M
κ0

[Gκ0 ] ≺ V M
κ1

[Gκ1 ].

Next we make two observations. First, since each κn is inaccessible, it follows that

for all n ∈ ω, V
M [Gκn ]
κn = V M

κn
[Gκn

].

Secondly, by directed closure as in Theorem 2.1, we have

(3.2) V
M [Gκn ]
κn = V M [G]

κn
.

To complete the proof, we now show that V
M [Gκn ]
κn ≺ V

M [Gκn+1 ]
κn+1 by induction on n. We have

taken care of the n = 0 case. Assume the result for n; we therefore have, by (3.2),

(3.3) M [G] |= Vκn
≺ Vκn+1 .

Since in+2 is defined from initial segments of G and from j, in+2 ∈ M [G]. Applying, in M [G], the

embedding in+2 to the formula “Vκn
≺ Vκn+1” yields “Vκn+1 ≺ Vκn+2” in M [G]. It follows that

V
M [Gκn+1 ]
κn+1 = V M [G]

κn+1
≺ V M [G]

κn+2
= V

M [Gκn+2 ]
κn+2 ,

and this completes the induction and the proof of the Claim.

Claim 3. V
M [G]
λ =

⋃
n∈ω V

M [Gκn ]
κn . Therefore, for each n, V

M [Gκn ]
κn ≺ V

M [G]
λ .

Proof. We have ⋃
n∈ω

V
M [Gκn ]
κn =

⋃
n∈ω

V M [G]
κn

= V
M [G]
λ .

Finally, we define the required elementary embedding k : V
M [G]
λ → V

M [G]
λ : Define k to be

the union of the in. Elementarity of k is verified in a straightforward way: If φ(x1, . . . , xn) is a

formula and a1, . . . , am are parameters all lying in V
M [G]
λ , then by Claim 3 we have that for some

n, these parameters lie in V
M [Gκn ]
κn and φ(a1, . . . , an) holds in V

M [Gκn ]
κn . By elementarity of in+1,

φ(in+1(a1), . . . , in+1(an)) holds in V
M [Gκn+1 ]
κn+1 . The result now follows by another application of

Claim 3.

Our work shows that we have a lifting of the original embedding j : Vλ → Vλ to k : V
M [G]
λ →

V
M [G]
λ . This completes the proof of Theorem 1.2.

Our work establishes the consistency of V = HOD with WA assuming an I3 embedding. As we

mentioned in the Introduction, it is not known whether the assumption “∃κ I3(κ)” can be replaced

by “WA”. We are left with the following open question:

Open Question. Does consistency of ZFC + WA imply consistency of ZFC + WA + V = HOD?
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We conclude the paper with a refinement suggested by the referee. With a slight modification

of the arguments and results mentioned in Section 2, we can extend the iteration Pλ through the

ordinals so that the forcing extension in which the embedding j has been lifted satisfies V = HOD.

Our work so far guarantees only that, in the final model, V = HOD holds in the rank Vλ. For the

remainder of the paper, we outline the proof of the following:

Theorem 3.1. If ZFC + I3 is consistent, so is ZFC + I3 + V = HOD. Moreover, given a countable

transitive model M of ZFC∗ + I3, with witness j : Vλ → Vλ, there is a class forcing in M and a

generic (class) filter G such that j lifts to an elementary embedding V
M [G]
λ → V

M [G]
λ and M [G] |=

V = HOD.

Before discussing the proof, we remark that, because of the non-absoluteness of V = HOD, we

cannot establish Theorem 1.1 from Theorem 3.1 simply by relativizing down: There is no guarantee

in the statement of Theorem 3.1 that, in M [G], for each set x ∈ (Vλ)M [G], the ordinal parameters

of a formula that witnesses ordinal definability of x in M [G] all lie in (Vλ)M [G].

We also observe that the work of Roguski in [Ro] (see also [Za, Section 4]) already implies the

first part of Theorem 3.1, namely, that

Con(ZFC + ∃κ I3(κ)) ⇒ Con(ZFC + ∃κ I3(κ) + V = HOD).

He shows that, in fact, for any Σ2-sentence σ, Con(ZFC + σ) ⇒ Con(ZFC + σ + V = HOD).

However, his result is not sufficient to guarantee that the embedding in the extension is a lifting of

the embedding in the ground model. And, for the same reasons given in the previous paragraph,

his result does not imply Theorem 1.1.

To prove Theorem 3.1, we would like to continue the iteration Pλ through the ordinals. How-

ever, our approach to establishing the crucial property

for all α, β with α < β ‖– αPαβ is α+-directed closed

(a property we will call strong closure for the remainder of the paper) has relied so far on the notion

of adequacy of a reverse Easton iteration, and this notion no longer makes sense if there happen

to be very few (or no) inaccessibles above λ. However, using arguments from Menas [Me], we can

establish strong closure without reliance on adequacy. We will prove the following modified version

of Theorem 1.2 and use this in combination with a modified V = HOD argument to obtain the

final result.

Theorem 3.2. Suppose that, in a countable transitive model M of a sufficiently large finite frag-

ment of ZFC, there is an I3 embedding j : Vλ → Vλ with critical point κ. Suppose that in M , P

is a strongly closed, reverse Easton class forcing that is j-coherent up to λ. Then there is a (class)

filter G that is P -generic over M for which j can be lifted to an embedding k : V
M [G]
λ → V

M [G]
λ .

10



The only modification to the statement of Theorem 1.2 here is replacement of adequacy of

the iteration by strong closure of the iteration. To prove Theorem 3.1, we revisit the proofs of

Theorems 2.3, 2.4, and 1.2. and mention the necessary modifications.

First, we can prove the analog to Theorems 2.3 simply by replacing adequacy with strong

closure in the argument, and continuing the iteration past λ, through the ordinals. The fact that

the iteration is strongly closed and that the resulting class forcing produces a model of ZFC+GCH is

well-known in this case without reference to adequacy (see for example [Fr, Chapter 3]). As before,

the iteration is j-coherent up to λ. Now, assuming Theorem 3.2, we can establish, in addition, that

the ground model embedding can be lifted to (Vλ)M [G] → (Vλ)M [G], as before.

For the analog to Theorem 2.4, we may assume this time that the ground model satisfies full

GCH, and again we replace adequacy with strong closure of the iteration in the statement of the

theorem. We attempt to extend the reverse Easton iteration beyond λ, through all the ordinals.

Here, we take as nontrivial coordinates the successors of beth fixed points instead of inaccessibles.

In defining the iteration up to Pκ, for each such successor α < κ, let ė denote a Pα-name for the

increasing enumeration of the beth fixed points ≤ κ in M [Gα]. Let Ȧ be a Pα name for a subset

of e(α) for which ‖– Pα
Ȧ ∼ Vė(α). Let Q̇α be a Pα name of least rank for the partial order E(f),

where f = fe(α),A is defined in M [Gα] as before (replacing α with e(α) in the present context).

Now extend the iteration from Pκ to Pλ as before, using j, and then continue the iteration past λ

using the definitions given for the stages up to Pκ.

Menas [Me, proof of Theorem 20] has shown that this iteration has the property that each

stage preserves beth fixed points and that for every α, |Pα| < e(α+2). This latter property provides

a bound that can be used, as in the proof of Theorem 2.1, to show that the iteration is strongly

closed — as before, the proof follows closely that of [Ba, Theorem 5.5].

Verification that V = HOD holds in the extension M [G] is similar to the proof given for

Theorem 2.4: First notice that, for each nontrivial coordinate β and set B ∼ Ve(β), the domain

of the Easton function f = fe(β),B used in the iteration must lie below the next beth fixed point

e(β + 1). As a result, after forcing with E(f), GCH will continue to hold for all γ ≥ e(β + 1).

Now, given α that is a successor of a beth fixed point, obtain A ∼ Ve(α) in M [Gα+1]. As we just

observed, GCH must continue to hold on all γ ≥ e(α); therefore we have as before that, for all

δ < e(α), δ ∈ A if and only if 2ωe(α)+δ+1 = ωe(α)+δ+3. Therefore A, and also each element of Ve(α),

is ordinal definable, relative to M [Gα+1]. By strong closure, this ordinal definability continues to

hold in M [G]. This completes the proof that M [G] |= V = HOD.

The proof of Theorem 3.2 is exactly the same as the proof of Theorem 1.2; this follows because

the only way that adequacy is used in Theorem 1.2 is in making use of the strong closure property

of the iteration.

Finally, we can establish Theorem 3.1: Given a countable transitive model M of ZFC∗ + I3,

with witness j : Vλ → Vλ, obtain the class forcing P described in the last few paragraphs for

11



obtaining V = HOD in the extension. By Theorem 3.2, there is a (class) generic filter G so that j

can be lifted to V
M [G]
λ → V

M [G]
λ , and by the discussion above, M [G] |= V = HOD. This completes

the proof of Theorem 3.1.

12



References.

[Ba] Baumgartner, J., Iterated forcing , Surveys in Set Theory (A.R.D. Mathias, ed.), Cam-

bridge Univ. Press, 1983, pp. 1–59.

[Co1] Corazza, P., Indestructibility of wholeness, In preparation.

[Co2] , The spectrum of elementary embeddings j : V → V , Ann. Pure Appl. Logic,

(2006), 139, pp. 327-399.

[Co3] , Consistency of V = HOD with the wholeness axiom, Arch. Math. Logic

(2000), 39, pp. 219–226.

[Co4] , Laver sequences for extendible and super-almost-huge cardinals, J. Symbolic

Logic (1999), 64, pp. 963–983.

[Co5] , The wholeness axiom and Laver sequences, Annals of Pure and Applied

Logic, (2000), 105, pp. 157–260.

[Fr] Friedman, S., Fine Structure and Class Forcing, Walter de Gruyter, New York, 2000.

[Ha1] Hamkins, J.D., The wholeness axioms and V = HOD, Arch. Math. Logic (2001), 40,

pp. 1–8.

[Ha2] , Fragile measurability, J. Symbolic Logic, (1994), 59, pp. 262-282.

[Je] Jech, T., Set Theory, Academic Press, New York, 1978.

[Ku1] Kunen, K., Set Theory: An Introduction To Independence Proofs, North-Holland

Publishing Company, New York, 1980.

[Ku2] Kunen, K., Elementary embeddings and infinitary combinatorics, J. Symbolic Logic

(1971), 36, pp. 407–413.

[Me] Menas,T., Consistency results concerning supercompactness, Trans. Amer. Math.

Soc., Vol. 223, 1976, pp. 61-91.

[Ro] Roguski, S., The theory of the class HOD in Set Theory and Hierarchy Theory,

Springer Lecture Notes in Math. (619), 1977.

[Za] Zadrożny, W., Iterating ordinal definability, Annals of Pure and Applied Logic,

(1983), 24, pp. 263–310.

13


