Consistency of V = HOD With the Wholeness Axiom

Paul Corazza

Archive for Mathematical Logic, No. 39, 2000, pp. 219-226 Department of Mathematics and Computer Science Boise State University Boise, ID 83725

e-mail: pcorazza@kdsi.net

Abstract. The Wholeness Axiom (WA) is an axiom schema that can be added to the axioms of ZFC in an extended language $\{\in, j\}$, and that asserts the existence of a nontrivial elementary embedding $j : V \to V$. The well-known inconsistency proofs are avoided by omitting from the schema all instances of Replacement for *j*-formulas. We show that the theory ZFC + V = HOD + WA is consistent relative to the existence of an I_1 embedding. This answers a question about the existence of Laver sequences for regular classes of set embeddings: Assuming there is an I_1 -embedding, there is a transitive model of ZFC+WA+ "there is a regular class of embeddings that admits no Laver sequence."

¹⁹⁹¹ Mathematics Subject Classification. Primary 03E55, 03E35.

Keywords and phrases. Wholeness Axiom, elementary embeddings, HOD, regular classes, Laver sequences.

§1. Introduction

The Wholeness Axiom (WA) is an axiom schema in an extended language $\{\in, j\}$ that is intended to provide a near-minimal weakening of the assertion "there is a nontrivial elementary embedding $j: V \to V$ " that is not obviously inconsistent with ZFC. In [C2], the details of this schema are developed; briefly, the axioms consist of all instances of Separation (but no instance of Replacement) for formulas having an occurrence of the symbol j, together with all axioms of the form $\phi(x_1, x_2, \ldots, x_n) \longrightarrow \phi(j(x_1), j(x_2), \ldots, j(x_n))$, and the axiom $\exists x j(x) \neq x$. Omitting from the schema all instances of Replacement for j-formulas provides a means to avoid a crucial step in Kunen's well-known inconsistency proof, because without Replacement for j-formulas, there is no guarantee that the sequence $\langle \kappa, j(\kappa), j^2(\kappa), \ldots \rangle$ has a supremum. Defining a WA-embedding $j: V \to V$ to be any witness to WA, we proved the following in [C2]:

Proposition (Consistency Strength Lemma).

- (1) Assume WA and let j denote the WA-embedding. If κ is the critical point of j, then κ is the κ th cardinal that is super-n-huge for every n.
- (2) If there is a nontrivial elementary embedding $i: V_{\lambda} \to V_{\lambda}$, for some limit λ , then $\langle V_{\lambda}, \in, i \rangle$ is a model of WA.

Several years ago, the author was asked whether WA is consistent with V = HOD (see [Ku1] or [Je] for an introduction to HOD); the question appears as Open Question 4.7 of [C2]. The question is quite natural: V = HOD is known to be consistent with many globally defined large cardinal axioms, such as strong and supercompact cardinals, under mild hypotheses (see [Me]), but the proofs do not carry over to the WA case in any obvious way. The main result of this note is the proof that V = HOD is indeed consistent with WA, modulo a strong large cardinal assumption. We will prove:

Theorem (Main Theorem). Suppose there is an I_1 -embedding. Then there is a model of ZFC + WA + V = HOD.

Our Main Theorem answers another question raised in [C2] concerning Laver sequences. Laver sequences were originally defined by Laver in [La]: A function $f : \kappa \to V_{\kappa}$ is a Laver sequence if for each set x and each ordinal $\lambda \geq \max(\kappa, |TC(x)|)$, there is a normal ultrafilter U over $P_{\kappa}\lambda$ such that if i_U is the canonical embedding defined from U, then $i_U(f)(\kappa) = x$. In [C2], a uniform scheme for defining Laver sequences for virtually all globally defined large cardinal axioms was developed by considering classes of set embeddings of the form $j : V_{\beta} \to M$, all having the same critical point. Such a class can be considered a candidate for admitting its own brand of Laver sequence only if it has the property that each set x is in the codomain of at least one of the embeddings in the class. In [C2], such a class is called a *regular* class and is denoted $\mathcal{E}^{\theta}_{\kappa}$ (where θ is a 4-parameter formula that defines the class). A function $f : \kappa \to V_{\kappa}$ is then said to be a $\mathcal{E}^{\theta}_{\kappa}$ -Laver sequence at κ if for each set x and each $\lambda > \max(\kappa, \operatorname{rank}(x))$, there are $\beta > \lambda$ and $i : V_{\beta} \to M \in \mathcal{E}^{\theta}_{\kappa}$ such that $i(\kappa) > \lambda$ and $i(f)(\kappa) = x$. In [C2] we proved the following: **Proposition** (Compatibility Lemma). Assume WA. Let $j : V \to V$ be the WA-embedding. Then every regular class $\mathcal{E}^{\theta}_{\kappa}$ of embeddings that is compatible with j admits a $\mathcal{E}^{\theta}_{\kappa}$ -Laver sequence at κ .

For completeness, we give the definition of compatibility:

Definition (Compatibility). Suppose $j: V \to V$ is the WA-embedding with critical point κ and suppose $\mathcal{E}_{\kappa}^{\theta}$ is regular at κ . Then we say $\mathcal{E}_{\kappa}^{\theta}$ is compatible with j if, whenever $\kappa < \lambda < j(\kappa)$, there are $\beta > \lambda, i: V_{\beta} \to M \in \mathcal{E}_{\kappa}^{\theta}$, and $k: M \to V_{j(\beta)}$ such that

- (1) $i(\kappa) > \lambda;$
- (2) k is an elementary embedding with $k \circ i = j | V_{\beta}$;
- (3) $k \mid V_{\lambda} \cap M = \mathrm{id}_{V_{\lambda} \cap M}$.

The natural question, left open in [C2], is whether there are regular classes that do not admit Laver sequences. In [C1], we proved the following:

Theorem (Regular Non-Laver Theorem). Suppose M is a transitive model of ZFC + V = HOD + "there exists a strong cardinal". Then M contains a regular class $\mathcal{E}_{\kappa}^{\theta}$ with no $\mathcal{E}_{\kappa}^{\theta}$ -Laver sequence.

The model M of the theorem can be obtained by forcing, starting with a model of a strong cardinal with an inaccessible above; see [Me]. The theorem answers the question raised in [C2] but still leaves open the possibility that, under WA, every regular class could admit a Laver sequence. However, under the hypothesis of an I_1 -embedding, the Main Theorem, together with the Consistency Strength Lemma, provides a model M of WA that satisfies the hypotheses of the Regular Non-Laver Theorem, thereby closing the remaining gap. We state this as a corollary:

Corollary to the Main Theorem. If there is an I_1 -embedding, then there is a model of ZFC + WA +"there is a regular class $\mathcal{E}^{\theta}_{\kappa}$ that admits no $\mathcal{E}^{\theta}_{\kappa}$ -Laver sequence."

The next section is devoted to the proof of the Main Theorem.

\S **2.** Proof of the Main Theorem

In this section, we combine two well known forcing iterations to obtain a model of WA + V = HOD. Starting with an I_1 -embedding $j : V_{\lambda+1} \to V_{\lambda+1}$ with critical point κ , we use the standard technique (see [Ha2] for an excellent exposition) for preserving the embedding via reverse Easton forcing. At successor stages of the iteration, we use coding tricks as in [Me] to force larger and larger V_{α} 's to be ordinal definable. In the final model V[G], because we will have $\hat{j} : V[G]_{\lambda+1} \to V[G]_{\lambda+1}$, then $(V[G]_{\lambda}, \in, \hat{j}|V[G]_{\lambda})$ will be a model of WA, and, because of coding, we will have $V[G]_{\lambda} \models V = HOD$.

Our forcing notation follows [Ba]; in particular, an iterated forcing P_{α} is completely specified by (the P_{β} -names for) its coordinate orderings \dot{Q}_{β} and by the type of limit taken at each limit ordinal $\leq \alpha$.

For the most part, we will not need to delve into the specifics of the construction of names for the forcing language; nonetheless, certain arguments will require these details. In those cases we will rely on the

treatment of names given in [Ku1]. In particular, we will make use of a useful technical lemma that extends the work in [Ku1], formulated by J. Hamkins in [H]:

Name-rank Lemma [Ha2]. If τ is a *P*-name, $rank(P) \leq \gamma$, and $\Vdash_P rank(\tau) \leq \beta$, then there is a name σ with $rank(\sigma) \leq \gamma + 3 \cdot \beta$ and $\parallel_P \sigma = \tau$.

We will be performing a reverse Easton iteration of an Easton forcing. We begin with a definition of these terms. A forcing iteration P_{λ} is a reverse Easton iteration iff direct limits are taken at all inaccessible cardinal stages and inverse limits are taken at all other limit stages. For sets I, J and cardinal λ , we let (as in [Ku1]) $Fn(I, J, \lambda)$ denote the partially ordered set of partial functions $p: I \to J$ having cardinality $< \lambda$, ordered by inclusion.

Suppose S is a set of regular cardinals and $f: S \to ON$ is defined so that for each ν , $f(\nu)$ is a cardinal, $cf(f(\nu)) > \nu$, and for all $\mu, \nu \in S$, $\mu < \nu$ implies $f(\mu) \leq f(\nu)$. (Such an f will be called an *Easton function*.) For such f, we let E(f) denote the partial order whose underlying set consists of functions p on S such that for all $\nu \in S$, $p(\nu) \in Fn(f(\nu), 2, \nu)$, and such that for each regular λ , $|\{\nu < \lambda : \nu \in S \text{ implies } p(\nu) \neq 0\}| < \lambda$; E(f) is ordered coordinate-wise. Recall that, if GCH holds, then E(f) forces that $2^{\nu} = f(\nu)$ for all $\nu \in S$.

Suppose the inaccessible cardinals are unbounded in λ . We define a function $in = in_{\lambda} : \lambda \to \lambda$ by $in(\alpha) =$ least inaccessible $> \alpha$.

2.1 Lemma. Suppose the inaccessible cardinals are unbounded in λ . Let P_{λ} be a reverse Easton iteration satisfying, for each $\alpha < \lambda$:

- (1) $|P_{\alpha}| < in(\alpha);$
- (2) $\parallel_{P_{\alpha}} Q_{\alpha}$ is $< \alpha^+$ -directed closed.

Then P_{λ} preserves inaccessible cardinals $\leq \lambda$.

Proof. Let $\gamma \leq \lambda$ be inaccessible. Suppose G is P_{λ} -generic over V.

Assume $V[G] \models "\gamma$ is not regular." In V[G], let $f : \alpha \to \gamma$ be a cofinal map where α is a cardinal $< \gamma$. Write $P_{\lambda} \cong P_{\alpha} * P_{\alpha,\lambda}$. Since, in $V[G_{\alpha}]$, $P_{\alpha,\lambda}$ is $< \alpha^+$ -directed closed, $f \in V[G_{\alpha}]$. However, since

$$\operatorname{sat}(P_{\alpha}) \le |P_{\alpha}|^+ < in(\alpha) \le \gamma$$

it follows that $V[G_{\alpha}] \models sup(f''\alpha) < \gamma$, and we have a contradiction.

Assume $V[G] \models "\gamma$ is not a strong limit". Let α be such that $\alpha < \gamma$ and $2^{\alpha} \ge \gamma$. Again note that since in $V[G_{\alpha}]$, $P_{\alpha,\lambda}$ is $< \alpha^+$ -directed closed,

$$\left(2^{\alpha}\right)^{V[G_{\alpha}]} = \left(2^{\alpha}\right)^{V[G]}.$$

Thus, in $V[G_{\alpha}], 2^{\alpha} \geq \gamma$. But, using the usual bounds computation for 2^{α} in forcing extensions,

$$\left(2^{\alpha}\right)^{V[G_{\alpha}]} \leq \left(|P_{\alpha}|^{<\operatorname{sat}(P_{\alpha})}\right)^{\alpha} < in(\alpha)^{\alpha} = in(\alpha) \leq \gamma,$$

and we have a contradiction. \blacksquare

An iteration P_{λ} satisfying the hypotheses of the previous lemma will be called an *adequate* reverse Easton iteration. We will work with an adequate reverse Easton iteration $P_{\lambda} \subset V_{\lambda+1}$ where λ is a strong limit and there is an I_1 embedding $j: V_{\lambda+1} \to V_{\lambda+1}$ with critical point κ . For such P_{λ} and j, we will say (see [Ha2]) that P_{λ} is *j*-coherent iff for each $\gamma < \lambda$, $j(P_{\gamma}) = P_{j(\gamma)}$; and that P_{λ} admits a master condition for j iff there is a condition $q \in P_{\lambda}$ such that $q \parallel p \in G \to j(p) \in G$, where G is the name of the generic. Let $\kappa_0 = \kappa$ and, for each $n \ge 1$, let $\kappa_n = j^n(\kappa)$. We will need the following lemma:

2.2 Lemma [Ha2]. If $j : V_{\lambda+1} \to V_{\lambda+1}$ is an elementary embedding with critical point κ and P_{λ} is a *j*-coherent adequate reverse Easton iteration, then P_{λ} admits a master condition for *j*.

Proof. Although our hypotheses are slightly different, the proof is nearly identical to that of [Ha2, Lemma 5.2]; we give an outline of the proof, highlighting the places where our different hypotheses are used.

The master condition q is defined in stages, over intervals (κ_n, κ_{n+1}) and at their endpoints. $q|j(\kappa) \in P_{j(\kappa)}$ is the trivial condition. Let \dot{G}_n be a P_{κ_n} -name for the generic G up to κ_n and let $\dot{G}^{(n)}$ denote the set $\{p(\kappa_n) : p \in G\}$. We let $q(\kappa_n)$ be a P_{κ_n} -name for a condition r such that, in $V[G_n], r \in Q_{\kappa_n}$ and $r \leq j(p)(\kappa_n)$ for all $p \in G_n$. Such a name exists since

$$\|-_{\kappa_n}|j''G^{(n-1)}| = |G^{(n-1)}| < in(\kappa_{n-1}) < \kappa_n,$$

and

$$\parallel_{\kappa_n} \dot{Q}_{\kappa_n}$$
 is $< \kappa_n^+$ -directed closed.

In a similar way, obtain $q|(\kappa_n, \kappa_{n+1})$ as a P_{κ_n} -name for a sequence $g \in P_{\kappa_n+1,\kappa_{n+1}}$ such that, in $V[G_n]$, $g(\beta) \leq j(p)(\beta)$ for all $p \in G_n$ and all $\beta \in (\kappa_n, \kappa_{n+1})$. The proof that this q satisfies the requirements of a master condition is the same as in [Ha2].

The next lemma tells us that any *j*-coherent adequate reverse Easton forcing preserves $I_1(\kappa)$, whenever j is an I_1 embedding; the proof uses the master condition obtained in Lemma 2.2 to lift j to the forcing extension in the usual way.

2.3 Lemma [Ha2]. Suppose $j : V_{\lambda+1} \to V_{\lambda+1}$ is an elementary embedding with critical point κ and P_{λ} is a *j*-coherent adequate reverse Easton iteration. Let $q \in P_{\lambda}$ be a master condition for *j*. Then $q \models_{P_{\lambda}} I_1(\kappa)$.

Outline of Proof. We outline the proof of Lemma 5.3 of [Ha2] in the present context. First notice that each $x \in V[G]_{\lambda}$ has a name in V_{λ} : $x \in V[G]_{\kappa_n}$ for some n, and so by adequacy of P_{λ} , x has a name in $V_{\kappa_{n+1}}$. Likewise, each element of $V[G]_{\lambda+1}$ has a name in $V_{\lambda+1}$ (using the fact that the name of a union is essentially a union of names). Now suppose q is a master condition, $q \in G$, and G is P_{λ} generic over V. As usual, we wish to define j on $V[G]_{\lambda+1}$ by $j(\tau_G) = [j(\tau)]_G$. By our observation, we may assume $\tau \in V_{\lambda+1}$, so the definition makes sense. To prove it's well-defined, we wish to show that $p \models \sigma = \tau$ implies $j(p) \models j(\sigma) = j(\tau)$. We first observe that the statement makes sense: for each formula $\psi(x_1, x_2, \ldots, x_n)$, the relation $p \models V[G]_{\lambda+1} \models \psi(\tau_1, \tau_2, \ldots, \tau_n)$, for all P_{λ} -names τ_1, \ldots, τ_n , is definable in $V_{\lambda+1}$ (by a straightforward but tedious induction that follows the proof of the Definability Theorem; see Kunen's treatment [Ku1, pp. 195-201]). The proof that j is well-defined now follows by a typical master condition argument, as does the proof that j is elementary.

In order to describe the Easton forcing that we will iterate, we need to fix some notation. Let π : $ON \times ON \to ON$ be the definable bijection given by Gödel's definable well-ordering of $ON \times ON$, having the property that for every cardinal ν , $\pi | \nu \times \nu$ is a bijection from $\nu \times \nu$ onto ν . In order to prove the consistency of V = HOD, we use the following coding scheme (exactly as in [Me]): For each beth fixed point ν and each set $A \subseteq \nu$, we write $A \sim V_{\nu}$ if there is a bijection $t : \nu \to V_{\nu}$ such that for all $(\beta, \alpha) \in \nu \times \nu$, $t(\beta) \in t(\alpha)$ iff $\pi(\beta, \alpha) \in A$. Now, as Menas observes in [Me], for any beth fixed point ν , if A is ordinal definable, then t, and hence every element of V_{ν} , is ordinal definable. (To find a set $A \sim V_{\nu}$, start with a bijection $f : \nu \to V_{\nu}$ and define $E \subseteq \nu \times \nu$ by putting $\beta E \alpha$ iff $f(\beta) \in f(\alpha)$, and then let $A = \pi'' E$.)

Given a beth fixed point ν and a set $A \subseteq \nu$ with $A \sim V_{\nu}$, we define a function $f = f_{\nu,A}$ on $S = S_{\nu,A} = \{\gamma : \gamma \text{ is a successor cardinal and } \nu = \omega_{\nu} < \gamma < \omega_{\nu+\nu}\}$ by setting, for each $\alpha < \nu$,

$$f(\omega_{\nu+\alpha+1}) = \begin{cases} \omega_{\nu+\alpha+3} & \text{if } \alpha \in A \\ \omega_{\nu+\alpha+2} & \text{if } \alpha \notin A \end{cases}$$

In this way, the pair (ν, A) determines a unique Easton function f; as in [Me], we write $E^*(\nu, A) = E(f)$.

We can now define the reverse Easton iteration P_{λ} that we will use. WLOG, we may assume GCH (see [Ha2, Corollary 5.4]). Fix an I_1 embedding $j : V_{\lambda+1} \to V_{\lambda+1}$ with critical point κ . We define P_{λ} by first specifying a reverse Easton iteration $P_{\kappa} \subset V_{\kappa}$ and then letting P_{λ} be the (unique) reverse Easton iteration for which $P_{\kappa_{n+1}} = j(P_{\kappa_n})$ for all $n \ge 0$. Using this approach, it is straightforward to verify, by elementarity of j, that the resulting P_{λ} is j-coherent.

For the definition of P_{κ} , since we have specified the behavior of the iteration at limits, it suffices to define \dot{Q}_{α} for each $\alpha < \kappa$. Given $\alpha < \kappa$ and P_{α} , we let \dot{e} be a P_{α} -name for the increasing enumeration of the beth fixed points $\leq \kappa$ in $V^{P_{\alpha}}$. Let \dot{A} be a P_{α} -name for a subset of $\dot{e}(\alpha)$ such that $\parallel_{P_{\alpha}} \dot{A} \sim \dot{V}_{\dot{e}(\alpha)}$. Finally, let \dot{Q}_{α} be a P_{α} -name of least rank for $E^*(\dot{e}(\alpha), \dot{A})$. This completes the definition of P_{κ} and P_{λ} .

Note that, for each $\alpha < \lambda$, $\parallel_{P_{\alpha}}$ " \dot{Q}_{α} is $\langle \dot{e}(\alpha)^+$ -directed closed". We prove that in fact, P_{λ} is an adequate reverse Easton iteration by showing that for each $\alpha \leq \lambda$, $|P_{\alpha}| < in(\alpha)$. We proceed by induction to show that for each α , $P_{\alpha} \in V_{in(\alpha)}$, and this will suffice. The base case and limit case are easy. We assume $P_{\alpha} \in V_{in(\alpha)}$ and show that $P_{\alpha+1} \in V_{in(\alpha)}$. Because \dot{Q}_{α} was chosen to be of least rank, it suffices to prove the existence of some P_{α} -name $\dot{Q} \in V_{in(\alpha)}$ which satisfies the definition of \dot{Q}_{α} .

Let $\mu < in(\alpha)$ be such that P_{α} has the μ -cc. Because (as one shows by induction in $V^{P_{\alpha}}$) $\parallel_{P_{\alpha}} \dot{e}(\alpha) < in(\alpha)$, it follows from the μ -cc that there is $\nu < in(\alpha)$ such that

$$\parallel_{P_{\alpha}} \dot{A} \subset \nu.$$

Using this bound, a straightforward computation in $V^{P_{\alpha}}$ yields:

$$\left\| -_{P_{\alpha}} \left| \dot{Q}_{\alpha} \right| \le 2^{\omega_{\nu+\nu}} < in(\alpha),$$

and, moreover, there is $\gamma < in(\alpha)$ such that

$${|\!|}{\!\!|}{\!\!|}_{{}_{P_\alpha}}\,\dot{Q}_\alpha \subset V[G]_\gamma.$$

By Hamkins' name-rank lemma, there is a P_{α} -name \dot{Q} of rank $\langle in(\alpha)$ such that $\parallel_{P_{\alpha}} \dot{Q} = \dot{Q}_{\alpha}$, and we are done.

Our observations so far enable us to conclude that Lemma 2.3 holds for P_{λ} . We now show that our forcing extension gives us a model of WA + V = HOD, completing the proof of the Main Theorem.

2.4 Lemma. If G is P_{λ} -generic and $q \in G$, where q is a master condition for j, then $V[G]_{\lambda} \models V = HOD$.

Proof. As in [Me], note that for each $\alpha < \lambda$, we have, in $V[G_{\alpha+1}]$, that there is $A \subseteq e(\alpha)$ such that $A \sim V_{e(\alpha)}$, and such that for each $\gamma < e(\alpha)$,

(*)
$$\gamma \in A \text{ iff } 2^{\omega_{e(\alpha)+\gamma+1}} = \omega_{e(\alpha)+\gamma+3}.$$

Thus, in $V[G_{\alpha+1}]$, every element of $V_{e(\alpha)}$ is hereditarily ordinal definable. Since in $V[G_{\alpha+1}]$, $P_{\alpha+1,\lambda}$ is $< e(\alpha+1)^+$ -directed closed, later stages of the iteration do not add new subsets to $V_{e(\alpha+1)}$, so that the defining property of A given in (*) continues to hold in V[G]. It follows that $V[G]_{\lambda} \models V = HOD$.

A natural question left open by our work here is whether the hypothesis of the main theorem can be weakened from the existence of an I_1 embedding to WA only. I will state the problem as a conjecture because both M. Magidor (in 1996) and, independently, the referee of this paper have made this conjecture to the author:

2.5 Conjecture.* From a model of ZFC + WA, a forcing extension can be found that satisfies ZFC + WA + V = HOD.

^{*} While I was in the process of working out a proof for this conjecture, I received a communication from J. Hamkins informing me that he had already done so. His arguments will appear in [Ha1].

References

- [Ba] Baumgartner, J., Iterated forcing, Surveys in Set Theory (A.R.D. Mathias, ed.), Cambridge Univ. Press, 1983, pp. 1–59.
- [C1] Corazza, P., Laver sequences for extendible and super-almost-huge cardinals, Journal of Symbolic Logic, Vol. 64, 3, September, 1999, pp. 963-983.
- [C2] _____, The wholeness axiom and Laver sequences, Annals of Pure and Applied Logic, in press.
- [Ha1] Hamkins, J., The wholeness axiom and V = HOD, to appear.
- [Ha2] _____, Fragile measurability, Journal of Symbolic Logic, Vol. 59, 1, March, 1994, pp. 262-282.
- [Je] Jech, T., Set Theory, Academic Press, 1978.
- [Ku1] Kunen, K., Set theory: an introduction to independence proofs, North Holland, New York, 1980.
- [Ku2] _____, Elementary embeddings and infinitary combinatorics, Journal of Symbolic Logic, 36, 1971, pp. 407-413.
- [La] Laver, R., Making the supercompactness of κ indestructible under κ -directed closed forcing, Israel Journal of Mathematics, Vol. 29, 4, 1978, pp. 385-388.
- [Me] Menas, T., Consistency results concerning supercompactness, Trans. Amer. Math. Soc., Vol. 223, 1976, pp. 61-91.