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Abstract. The Wholeness Axiom (WA) is an axiom schema that can be added to the

axioms of ZFC in an extended language {∈, j}, and that asserts the existence of a nontrivial

elementary embedding j : V → V . The well-known inconsistency proofs are avoided by

omitting from the schema all instances of Replacement for j-formulas. We show that the

theory ZFC + V = HOD + WA is consistent relative to the existence of an I1 embedding.

This answers a question about the existence of Laver sequences for regular classes of set

embeddings: Assuming there is an I1-embedding, there is a transitive model of ZFC+WA+

“there is a regular class of embeddings that admits no Laver sequence.”
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§1. Introduction

The Wholeness Axiom (WA) is an axiom schema in an extended language {∈, j} that is intended to

provide a near-minimal weakening of the assertion “there is a nontrivial elementary embedding j : V → V ”

that is not obviously inconsistent with ZFC. In [C2], the details of this schema are developed; briefly, the

axioms consist of all instances of Separation (but no instance of Replacement) for formulas having an occur-

rence of the symbol j, together with all axioms of the form φ(x1, x2, . . . , xn) −→ φ(j(x1), j(x2), . . . , j(xn)),

and the axiom ∃x j(x) �= x. Omitting from the schema all instances of Replacement for j-formulas provides

a means to avoid a crucial step in Kunen’s well-known inconsistency proof, because without Replacement

for j-formulas, there is no guarantee that the sequence 〈κ, j(κ), j2(κ), . . .〉 has a supremum. Defining a

WA-embedding j : V → V to be any witness to WA, we proved the following in [C2]:

Proposition (Consistency Strength Lemma).

(1) Assume WA and let j denote the WA-embedding. If κ is the critical point of j, then κ is the κth cardinal

that is super-n-huge for every n.

(2) If there is a nontrivial elementary embedding i : Vλ → Vλ, for some limit λ, then 〈Vλ,∈, i〉 is a model of

WA.

Several years ago, the author was asked whether WA is consistent with V = HOD (see [Ku1] or [Je] for

an introduction to HOD); the question appears as Open Question 4.7 of [C2]. The question is quite natural:

V = HOD is known to be consistent with many globally defined large cardinal axioms, such as strong and

supercompact cardinals, under mild hypotheses (see [Me]), but the proofs do not carry over to the WA case

in any obvious way. The main result of this note is the proof that V = HOD is indeed consistent with WA,

modulo a strong large cardinal assumption. We will prove:

Theorem (Main Theorem). Suppose there is an I1-embedding. Then there is a model of ZFC+WA+V =

HOD.

Our Main Theorem answers another question raised in [C2] concerning Laver sequences. Laver sequences

were originally defined by Laver in [La]: A function f : κ → Vκ is a Laver sequence if for each set x and

each ordinal λ ≥ max(κ, |TC(x)|), there is a normal ultrafilter U over Pκλ such that if iU is the canonical

embedding defined from U , then iU (f)(κ) = x. In [C2], a uniform scheme for defining Laver sequences for

virtually all globally defined large cardinal axioms was developed by considering classes of set embeddings

of the form j : Vβ → M , all having the same critical point. Such a class can be considered a candidate for

admitting its own brand of Laver sequence only if it has the property that each set x is in the codomain

of at least one of the embeddings in the class. In [C2], such a class is called a regular class and is denoted

Eθ
κ (where θ is a 4-parameter formula that defines the class). A function f : κ → Vκ is then said to be a

Eθ
κ-Laver sequence at κ if for each set x and each λ > max(κ, rank(x)), there are β > λ and i : Vβ →M ∈ Eθ

κ

such that i(κ) > λ and i(f)(κ) = x. In [C2] we proved the following:
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Proposition (Compatibility Lemma). Assume WA. Let j : V → V be the WA-embedding. Then every

regular class Eθ
κ of embeddings that is compatible with j admits a Eθ

κ-Laver sequence at κ.

For completeness, we give the definition of compatibility:

Definition (Compatibility). Suppose j : V → V is the WA-embedding with critical point κ and suppose Eθ
κ

is regular at κ. Then we say Eθ
κ is compatible with j if, whenever κ < λ < j(κ), there are β > λ, i : Vβ →

M ∈ Eθ
κ, and k : M → Vj(β) such that

(1) i(κ) > λ;

(2) k is an elementary embedding with k ◦ i = j|Vβ ;

(3) k | Vλ ∩M = idVλ∩M .

The natural question, left open in [C2], is whether there are regular classes that do not admit Laver

sequences. In [C1], we proved the following:

Theorem (Regular Non-Laver Theorem). Suppose M is a transitive model of ZFC + V = HOD + “there

exists a strong cardinal”. Then M contains a regular class Eθ
κ with no Eθ

κ-Laver sequence.

The model M of the theorem can be obtained by forcing, starting with a model of a strong cardinal with

an inaccessible above; see [Me]. The theorem answers the question raised in [C2] but still leaves open the

possibility that, under WA, every regular class could admit a Laver sequence. However, under the hypothesis

of an I1-embedding, the Main Theorem, together with the Consistency Strength Lemma, provides a model

M of WA that satisfies the hypotheses of the Regular Non-Laver Theorem, thereby closing the remaining

gap. We state this as a corollary:

Corollary to the Main Theorem. If there is an I1-embedding, then there is a model of ZFC + WA+

“there is a regular class Eθ
κ that admits no Eθ

κ-Laver sequence.”

The next section is devoted to the proof of the Main Theorem.

§2. Proof of the Main Theorem

In this section, we combine two well known forcing iterations to obtain a model of WA + V = HOD.

Starting with an I1-embedding j : Vλ+1 → Vλ+1 with critical point κ, we use the standard technique (see

[Ha2] for an excellent exposition) for preserving the embedding via reverse Easton forcing. At successor

stages of the iteration, we use coding tricks as in [Me] to force larger and larger Vα’s to be ordinal definable.

In the final model V [G], because we will have ĵ : V [G]λ+1 → V [G]λ+1, then (V [G]λ,∈, ĵ|V [G]λ) will be a

model of WA, and, because of coding, we will have V [G]λ |= V = HOD.

Our forcing notation follows [Ba]; in particular, an iterated forcing Pα is completely specified by (the

Pβ-names for) its coordinate orderings Q̇β and by the type of limit taken at each limit ordinal ≤ α.

For the most part, we will not need to delve into the specifics of the construction of names for the

forcing language; nonetheless, certain arguments will require these details. In those cases we will rely on the
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treatment of names given in [Ku1]. In particular, we will make use of a useful technical lemma that extends

the work in [Ku1], formulated by J. Hamkins in [H]:

Name-rank Lemma [Ha2]. If τ is a P -name, rank(P ) ≤ γ,and ‖—
P
rank(τ) ≤ β, then there is a name

σ with rank(σ) ≤ γ + 3 · β and ‖—
P
σ = τ .

We will be performing a reverse Easton iteration of an Easton forcing. We begin with a definition of

these terms. A forcing iteration Pλ is a reverse Easton iteration iff direct limits are taken at all inaccessible

cardinal stages and inverse limits are taken at all other limit stages. For sets I, J and cardinal λ, we let (as

in [Ku1]) Fn(I, J, λ) denote the partially ordered set of partial functions p : I → J having cardinality < λ,

ordered by inclusion.

Suppose S is a set of regular cardinals and f : S → ON is defined so that for each ν, f(ν) is a cardinal,

cf(f(ν)) > ν, and for all µ, ν ∈ S, µ < ν implies f(µ) ≤ f(ν). (Such an f will be called an Easton function.)

For such f , we let E(f) denote the partial order whose underlying set consists of functions p on S such that

for all ν ∈ S, p(ν) ∈ Fn(f(ν), 2, ν), and such that for each regular λ, |{ν < λ : ν ∈ S implies p(ν) �= 0}| < λ;

E(f) is ordered coordinate-wise. Recall that, if GCH holds, then E(f) forces that 2ν = f(ν) for all ν ∈ S.

Suppose the inaccessible cardinals are unbounded in λ. We define a function in = inλ : λ → λ by

in(α) = least inaccessible > α.

2.1 Lemma. Suppose the inaccessible cardinals are unbounded in λ. Let Pλ be a reverse Easton iteration

satisfying, for each α < λ:

(1) |Pα| < in(α);

(2) ‖—
Pα
Qα is < α+-directed closed.

Then Pλ preserves inaccessible cardinals ≤ λ.

Proof. Let γ ≤ λ be inaccessible. Suppose G is Pλ-generic over V .

Assume V [G] |= “γ is not regular.” In V [G], let f : α → γ be a cofinal map where α is a cardinal < γ.

Write Pλ
∼= Pα ∗ Pα,λ. Since, in V [Gα], Pα,λ is < α+-directed closed, f ∈ V [Gα]. However, since

sat(Pα) ≤ |Pα|+ < in(α) ≤ γ,

it follows that V [Gα] |= sup(f ′′α) < γ, and we have a contradiction.

Assume V [G] |= “γ is not a strong limit”. Let α be such that α < γ and 2α ≥ γ. Again note that since

in V [Gα], Pα,λ is < α+-directed closed,

(
2α

)V [Gα] =
(
2α

)V [G]
.

Thus, in V [Gα], 2α ≥ γ. But, using the usual bounds computation for 2α in forcing extensions,

(
2α

)V [Gα] ≤ (|Pα|<sat(Pα)
)α

< in(α)α = in(α) ≤ γ,
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and we have a contradiction.

An iteration Pλ satisfying the hypotheses of the previous lemma will be called an adequate reverse

Easton iteration. We will work with an adequate reverse Easton iteration Pλ ⊂ Vλ+1 where λ is a strong

limit and there is an I1 embedding j : Vλ+1 → Vλ+1 with critical point κ. For such Pλ and j, we will say

(see [Ha2]) that Pλ is j-coherent iff for each γ < λ, j(Pγ) = Pj(γ); and that Pλ admits a master condition

for j iff there is a condition q ∈ Pλ such that q ‖— p ∈ G → j(p) ∈ G, where G is the name of the generic.

Let κ0 = κ and, for each n ≥ 1, let κn = jn(κ). We will need the following lemma:

2.2 Lemma [Ha2]. If j : Vλ+1 → Vλ+1 is an elementary embedding with critical point κ and Pλ is a

j-coherent adequate reverse Easton iteration, then Pλ admits a master condition for j.

Proof. Although our hypotheses are slightly different, the proof is nearly identical to that of [Ha2, Lemma

5.2]; we give an outline of the proof, highlighting the places where our different hypotheses are used.

The master condition q is defined in stages, over intervals (κn, κn+1) and at their endpoints. q|j(κ) ∈
Pj(κ) is the trivial condition. Let Ġn be a Pκn -name for the generic G up to κn and let Ġ(n) denote the set

{p(κn) : p ∈ G}. We let q(κn) be a Pκn -name for a condition r such that, in V [Gn],r ∈ Qκn and r ≤ j(p)(κn)

for all p ∈ Gn. Such a name exists since

‖—
κn

|j′′G(n−1)| = |G(n−1)| < in(κn−1) < κn,

and

‖—
κn
Q̇κn is < κ+

n -directed closed.

In a similar way, obtain q|(κn, κn+1) as a Pκn -name for a sequence g ∈ Pκn+1,κn+1 such that, in V [Gn],

g(β) ≤ j(p)(β) for all p ∈ Gn and all β ∈ (κn, κn+1). The proof that this q satisfies the requirements of a

master condition is the same as in [Ha2].

The next lemma tells us that any j-coherent adequate reverse Easton forcing preserves I1(κ), whenever

j is an I1 embedding; the proof uses the master condition obtained in Lemma 2.2 to lift j to the forcing

extension in the usual way.

2.3 Lemma [Ha2]. Suppose j : Vλ+1 → Vλ+1 is an elementary embedding with critical point κ and Pλ is

a j-coherent adequate reverse Easton iteration. Let q ∈ Pλ be a master condition for j. Then q ‖—
Pλ
I1(κ).

Outline of Proof. We outline the proof of Lemma 5.3 of [Ha2] in the present context. First notice

that each x ∈ V [G]λ has a name in Vλ: x ∈ V [G]κn for some n, and so by adequacy of Pλ, x has a

name in Vκn+1 . Likewise, each element of V [G]λ+1 has a name in Vλ+1 (using the fact that the name

of a union is essentially a union of names). Now suppose q is a master condition, q ∈ G, and G is Pλ-

generic over V . As usual, we wish to define j on V [G]λ+1 by j(τG) = [j(τ)]G. By our observation, we

may assume τ ∈ Vλ+1, so the definition makes sense. To prove it’s well-defined, we wish to show that
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p ‖—σ = τ implies j(p) ‖— j(σ) = j(τ). We first observe that the statement makes sense: for each formula

ψ(x1, x2, . . . , xn), the relation p ‖—V [G]λ+1 |= ψ(τ1, τ2, . . . , τn), for all Pλ-names τ1, . . . , τn, is definable in

Vλ+1 (by a straightforward but tedious induction that follows the proof of the Definability Theorem; see

Kunen’s treatment [Ku1, pp. 195-201]). The proof that j is well-defined now follows by a typical master

condition argument, as does the proof that j is elementary.

In order to describe the Easton forcing that we will iterate, we need to fix some notation. Let π :

ON × ON → ON be the definable bijection given by Gödel’s definable well-ordering of ON × ON , having

the property that for every cardinal ν, π|ν×ν is a bijection from ν×ν onto ν. In order to prove the consistency

of V = HOD, we use the following coding scheme (exactly as in [Me]): For each beth fixed point ν and each

set A ⊆ ν, we write A ∼ Vν if there is a bijection t : ν → Vν such that for all (β, α) ∈ ν × ν, t(β) ∈ t(α) iff

π(β, α) ∈ A. Now, as Menas observes in [Me], for any beth fixed point ν, if A is ordinal definable, then t,

and hence every element of Vν , is ordinal definable. (To find a set A ∼ Vν , start with a bijection f : ν → Vν

and define E ⊆ ν × ν by putting β E α iff f(β) ∈ f(α), and then let A = π′′E.)

Given a beth fixed point ν and a set A ⊆ ν with A ∼ Vν , we define a function f = fν,A on S = Sν,A =

{γ : γ is a successor cardinal and ν = ων < γ < ων+ν} by setting, for each α < ν,

f(ων+α+1) =
{
ων+α+3 if α ∈ A
ων+α+2 if α �∈ A

In this way, the pair (ν,A) determines a unique Easton function f ; as in [Me], we write E∗(ν,A) = E(f).

We can now define the reverse Easton iteration Pλ that we will use. WLOG, we may assume GCH (see

[Ha2, Corollary 5.4]). Fix an I1 embedding j : Vλ+1 → Vλ+1 with critical point κ. We define Pλ by first

specifying a reverse Easton iteration Pκ ⊂ Vκ and then letting Pλ be the (unique) reverse Easton iteration

for which Pκn+1 = j(Pκn) for all n ≥ 0. Using this approach, it is straightforward to verify, by elementarity

of j, that the resulting Pλ is j-coherent.

For the definition of Pκ, since we have specified the behavior of the iteration at limits, it suffices to

define Q̇α for each α < κ. Given α < κ and Pα, we let ė be a Pα-name for the increasing enumeration of the

beth fixed points ≤ κ in V Pα . Let Ȧ be a Pα-name for a subset of ė(α) such that ‖—Pα
Ȧ ∼ V̇ė(α). Finally,

let Q̇α be a Pα-name of least rank for E∗(ė(α), Ȧ). This completes the definition of Pκ and Pλ.

Note that, for each α < λ, ‖—Pα
“Q̇α is < ė(α)+-directed closed”. We prove that in fact, Pλ is an

adequate reverse Easton iteration by showing that for each α ≤ λ, |Pα| < in(α). We proceed by induction

to show that for each α, Pα ∈ Vin(α), and this will suffice. The base case and limit case are easy. We assume

Pα ∈ Vin(α) and show that Pα+1 ∈ Vin(α). Because Q̇α was chosen to be of least rank, it suffices to prove

the existence of some Pα-name Q̇ ∈ Vin(α) which satisfies the definition of Q̇α.

Let µ < in(α) be such that Pα has the µ-cc. Because (as one shows by induction in V Pα) ‖—
Pα
ė(α) <

in(α), it follows from the µ-cc that there is ν < in(α) such that

‖—
Pα
Ȧ ⊂ ν.
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Using this bound, a straightforward computation in V Pα yields:

‖—
Pα

|Q̇α| ≤ 2ων+ν < in(α),

and, moreover, there is γ < in(α) such that

‖—
Pα
Q̇α ⊂ V [G]γ .

By Hamkins’ name-rank lemma, there is a Pα-name Q̇ of rank < in(α) such that ‖—
Pα
Q̇ = Q̇α, and we are

done.

Our observations so far enable us to conclude that Lemma 2.3 holds for Pλ. We now show that our

forcing extension gives us a model of WA + V = HOD, completing the proof of the Main Theorem.

2.4 Lemma. If G is Pλ-generic and q ∈ G, where q is a master condition for j, then V [G]λ |= V = HOD.

Proof. As in [Me], note that for each α < λ, we have, in V [Gα+1], that there is A ⊆ e(α) such that

A ∼ Ve(α), and such that for each γ < e(α),

(∗) γ ∈ A iff 2ωe(α)+γ+1 = ωe(α)+γ+3.

Thus, in V [Gα+1], every element of Ve(α) is hereditarily ordinal definable. Since in V [Gα+1], Pα+1,λ is

< e(α + 1)+-directed closed, later stages of the iteration do not add new subsets to Ve(α+1), so that the

defining property of A given in (∗) continues to hold in V [G]. It follows that V [G]λ |= V = HOD.

A natural question left open by our work here is whether the hypothesis of the main theorem can be

weakened from the existence of an I1 embedding to WA only. I will state the problem as a conjecture because

both M. Magidor (in 1996) and, independently, the referee of this paper have made this conjecture to the

author:

2.5 Conjecture.* From a model of ZFC+WA, a forcing extension can be found that satisfies ZFC+WA+

V = HOD.

* While I was in the process of working out a proof for this conjecture, I received a communication from

J. Hamkins informing me that he had already done so. His arguments will appear in [Ha1].
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