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Indestructibility of Wholeness
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Abstract. The Wholeness Axiom (WA) is an axiom schema that asserts the exis-
tence of a nontrivial elementary embedding from V to itself. The schema is formulated
in the language {∈, j}, where j is a unary function symbol intended to stand for the
embedding. WA consists of an Elementarity schema that asserts j is an elementary em-
bedding, a Critical Point axiom that asserts existence of a least ordinal moved, and a
schema Separationj that asserts Separation holds for all instances of j-formulas. The the-
ory ZFC + WA has been proposed in the author’s earlier papers as a natural axiomatic
extension of ZFC to account for most of the known large cardinals. In this paper we offer
evidence for the naturalness of this theory by showing that it is, like ZFC itself, indestruc-
tible by set forcing. We show first that if κ is the critical point of the embedding, then
ZFC+WA is preserved by any notion of forcing that belongs to Vκ. This step is nontrivial
because to prove Separationj holds in the forcing extension after lifting the embedding, it
is necessary to incorporate j into the definition of the forcing relation. Then for arbitrary
notions of forcing, we introduce a different technique of lifting that lifts one of the original
embedding’s applicative iterates.

1. Introduction. The Wholeness Axiom (WA) is an axiom schema that
asserts the existence of a nontrivial elementary embedding from V to itself.
By formalizing the axiom as an axiom schema in the language {∈, j} that
asserts j is an elementary embedding, and supplementing with axioms that
assert existence of a least ordinal moved (Critical Point) and with another
schema Separationj that asserts Separation holds for j-formulas, Kunen’s fa-
mous inconsistency result [Ku71] is averted. The schema Elementarity for
elementarity of j together with Critical Point is called BTEE (the Basic The-
ory of Elementary Embeddings). Then WA = BTEE + Separationj. We also
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2 P. Corazza

define WA0 to be the theory BTEE + Σ0-Separationj, where Σ0-Separationj

is the schema of all Σ0 instances of Separation for j-formulas.
The theory ZFC + WA is strong enough to show that the critical point κ

of the WA-embedding is super-n-huge for every n, and that it is the κth such
cardinal [C06]. Note that if i : Vλ → Vλ is an I3 embedding, then (Vλ,∈, i)
is a model of ZFC + WA. The Wholeness Axiom, together with a number of
related weaker theories, has been investigated in [C00a, C00b, C06, C07b,
C10, C20] and in [H01].

We have argued elsewhere [C10, C20] that ZFC + WA provides a natural
extension of ZFC for providing an axiomatic foundation for large cardinals.
One test of “naturalness” of such a foundation is whether the theory is in-
destructible by set forcing; certainly ZFC itself has this characteristic. We
show in this paper that this requirement is met:

Main Theorem 1.1. Suppose (M,∈, j) is a model of ZFC+WA, P ∈M ,
andM |= “P is a notion of forcing”. Then for any generic extension N ofM ,
there is a map k : N → N such that (N,∈, k) is a model of ZFC + WA. In
particular, the theory ZFC + WA is indestructible by set forcing.

It follows that, for example, WA is consistent with CH, Martin’s Axiom,
PFA, and their negations.

In this Introduction, we outline the proof of the main result. A careful
implementation of the logic given here involves more technical details than
might be expected. As we explain in the Appendix (Section 4), when forcing
from ZFC+WA, the usual justification for assuming that the ground model is
countable and transitive fails. One alternative is to work entirely in Boolean-
valued models; another is to begin with a possibly non-well-founded model
(M,E, j) of ZFC+WA. Since the forcing machinery for the latter approach,
developed along the lines of modern treatments of forcing using countable
transitive models as in [J78] and [Ku80], has already been worked out [C07a],
we have opted to follow this second route.

In Section 2 we fix notation and state the main results concerning the
forcing machinery we will be using. We also review facts about the theories
ZFC + WA0 and ZFC + WA that we will need. In Section 3 we prove the
Main Theorem. We include at the end, as Section 4, an Appendix in which
we explain in some detail why countable transitive ground models may not
be assumed in the present context.

We turn to an outline of the proof of the main result. Suppose (M,∈, j) is
a model of ZFC+BTEE, the critical point of j is κ, B is a complete Boolean
algebra in M , G is B-generic over M , and, in M , B ∈ Vκ. Then, if we define
a map k : M [G]→M [G] by k(σG) = (j(σ))G, using familiar arguments one
verifies that (M [G],∈, k) is also a model of ZFC + BTEE. The map k is an
example of a lifting of j in the sense that k is an elementary embedding and
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k ⊇ j. This result can then be applied to show that “small forcing” (forcing
with a complete Boolean algebra of size < κ) also preserves BTEE.

If (M,∈, j) as in the previous paragraph is a model of ZFC + WA0, we
show that, for a particular k : M [G] → M [G], also obtainable as a lifting,
(M [G],∈, k) is also a model of ZFC + WA0. To do this, we invoke [C06,
Theorem 8.8], which asserts that, in M ,

(1.1) Vκ ≺ Vj(κ) ≺ · · · ≺ V,

to show that, for each n, VM
κn [G] = (Vκn)M [G] (where κn = jn(κ)), and from

this we show thatM [G] |= ∃z (z = j�Vκn). This is enough because of the fact
[C06, Theorems 8.2, 8.6] that Σ0-Separationj is equivalent to Amenabilityj:
for each set x, j�x is a set.

To establish the same result for ZFC + WA, we must show that
(M [G],∈, k) satisfies full Separationj. The first step to obtain this result
is to extend the usual Boolean evaluation map [[ · ]]MB to include terms de-
fined by j-formulas, in the case in which rank(B) < κ. This is accomplished
by induction on formula complexity. The important case is atomic formu-
las. We show that there is a unique extension of [[ · ]]MB , restricted to atomic
formulas, that is definable in (M,∈, j) and that respects elementarity, and
then extend the domain of [[ · ]]MB so that names defined by any j-formula
are included. Having taken this step, the property that (M [G],∈, k) satisfies
Separationj follows from the fact that it holds in (M,∈, j).

To prove that ZFC + WA is indestructible by set forcing, let (M,∈, j) be
a model of ZFC + WA and let B ∈ M be such that M |= “B is a complete
Boolean algebra”. Using (1.1), we obtain n ∈ ω large enough so thatB ∈ Vκn .
We then replace j by its applicative iterate j[n] (recall from [C06] and [De00]
that j[1] = j and j[n+1] = j · j[n] and the critical point of j[n] is κn). It is
known (see Proposition 2.11) that (V,∈, j[n]) is also a model of ZFC + WA,
and now, by the choice of n, B ∈ Vκn . Our work above then gives us a lift-
ing k : M [G] → M [G] of j[n] such that (M [G],∈, k) satisfies ZFC + WA.
This completes the outline of the proof that set forcing cannot destroy
ZFC + WA.

2. Preliminaries

2.1. The theory ZFCj and some extensions. When working in the
language L = {∈, j}, where j is a unary function symbol, our basic theory is
ZFCj, consisting of ZFC together with the first-order logic of L. Formulas in
which j does not occur will be called ∈-formulas, whereas formulas having
at least one occurrence of j will be called j-formulas.

Including the function symbol j means that we need to consider L-terms
(which we will call j-terms from now on). As usual, terms are defined by the
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clauses: (a) a variable is a term, and (b) if t is a term, so is j(t). The terms
are of the form jn(x) for variables x (assuming j0(x) is taken to be x).

The L-formulas can be classified by complexity in the usual way, though
some of the usual theorems about the Lévy hierarchy of ZFC formulas do
not hold in the present context (1). An atomic formula is any formula of
the form s = t or s ∈ t, where s and t are j-terms. A bounded formula is
one in which all quantifiers are bound. The collection of bounded formulas is
denoted Σ0 (or, equivalently, Π0 or ∆0). Continuing the inductive definition
in the metatheory, Σn+1 is the set of L-formulas φ of the form ∃x ψ where
ψ is in Πn, and similarly for Πn+1. If T is an extension of ZFCj and φ is an
L-formula, we say that φ is ΣT

n if, for some Σn L-formula ψ, T ` φ ⇔ ψ,
and similarly for ΠT

n .
The following proposition from [C06] says that Σ0 formulas in the lan-

guage L have the familiar absoluteness properties:

Proposition 2.1 (Absoluteness of Σ0 formulas). SupposeM=(M,E, j)
is a model of T = ZFCj. Suppose A is a transitive subset of M (that is, if
y ∈ A, x ∈ M, and M |= xE y, then x ∈ A) and j�A : A → A. Let
A = (A,E, j�A). Suppose φ(x1, . . . , xn) is a Σ0 L-formula. Then for all
a1, . . . , an ∈ A,

M |= φ[a1, . . . , an] ⇐⇒ A |= φ[a1, . . . , an].

Next, we mention some of the axioms studied in [C06] that will be relevant
in this paper:

• Elementarity: Each of the following j-sentences is an axiom, where
φ(x1, . . . , xm) is an ∈-formula:

∀x1, . . . , xm
(
φ(x1, . . . , xm)⇔ φ(j(x1), . . . , j(xm))

)
.

• Nontriviality: ∃x j(x) 6= x.
• Critical Point: There is a least ordinal moved by j (denoted κ).
• BTEE: Elementarity + Critical Point.
• Amenabilityj: For every set x, there is a set z such that z = j�x.
• Separationj: All instances of Separation for j-formulas.
• Σn-Separationj: All Σn instances of Separation for j-formulas.
• Cofinal Axiom: ∀α ∃n ∈ ω (jn(κ) exists and α ≤ jn(κ)).
• WA: Elementarity + Critical Point + Separationj.
• WAn: Elementarity + Critical Point + Σn-Separationj.
• Σn-Replacementj: Replacement for j-formulas, restricted toΣn instances.

(1) For instance, it is not generally the case that ∃x ∈ y φ is equivalent to a Πn formula
if φ is Πn, nor that ∀x ∈ y ψ is equivalent to a Σn formula if ψ is Σn since the usual
proofs of these equivalences require applications of Replacement for j-formulas, which is
not available in the theories we discuss here; see [C06, p. 335].
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As a notational convention, whenever we are dealing with an extension
of the theory ZFCj +Critical Point, we let κ (or κ0) denote the critical point
of j, and we define κn = jn(κ), n ≥ 1, whenever it exists (2).

Although Critical Point clearly implies Nontriviality, the converse is false.
In fact, we have the following:

Proposition 2.2 ([C06, pp. 336–338]).

(1) Con(ZFC) implies that there is a model (M,E, j) of ZFC+ Elementarity
+Nontriviality.

(2) ZFC + BTEE ` “κ is inaccessible”.

The model (M,E, j) guaranteed to exist in Proposition 2.2(1) is neces-
sarily ill-founded. Indeed:

Proposition 2.3 (Transitive models satisfy BTEE, [C06, Proposition
2.8]). Any well-founded model of ZFC + Elementarity + Nontriviality also
satisfies Critical Point, and hence BTEE.

As usual, the critical point is always moved up by the embedding:

Proposition 2.4 ([C06, Proposition 2.6]).

ZFC + Elementarity + Critical Point ` j(κ) > κ.

The three theories that will concern us in this paper are

(1) ZFC + BTEE,
(2) ZFC + WA0,
(3) ZFC + WA.

The strengths of these theories are given by the following proposition:

Proposition 2.5 (Strengths of common extensions of ZFCj, [C06]).

(1) The consistency strength of ZFC+BTEE lies between that of an ineffable
cardinal and that of 0#.

(2) The consistency strength of each of the theories ZFC+WA0 and ZFC+WA
lies between that of a cardinal that is super-n-huge for every n and the
existence of an I3 embedding (3).

(3) The theory ZFC + BTEE + Σ1-Replacementj is inconsistent.

Part (2) leads to the question of whether ZFC + WA is consistencywise
stronger than ZFC + WA0. The answer is unknown at this time, though
it is known that ZFC + WA is stronger than ZFC + WA0 in the following

(2) It is possible that jn(κ) fails to exist in certain models of ZFCj. For instance, if
there is a model of ZFC + BTEE at all, there is also a nonstandard modelM = (M,E, j).
Let N = {x ∈M : ∃n ∈ ωM |= rank(x) < jn(κ)}. Then N together with k = j�N is also
a model of ZFC + BTEE, but if n̄ is a nonstandard integer, then kn̄(κ) does not exist. See
[C06, p. 350 ff.] for more on this point.

(3) Definitions may be found in [C06].
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sense: There is a sentence σ that is provable from ZFC + WA but not from
ZFC + WA0 (4). Part (3) of this proposition is essentially Kunen’s famous
inconsistency result [Ku71].

The anomalous fact mentioned above that, in some models of ZFC +
BTEE, jn(κ) may not exist for certain (nonstandard) n, is mollified consid-
erably for models of ZFC + WA0 by part (2) of the following:

Proposition 2.6.

(1) ([C00b, Propositions 3.11, 3.12]) The theory ZFC + WA proves

Vκ0 ≺ Vκ1 ≺ · · · ≺ Vκn ≺ · · · ≺ V.
(2) ([C06, Section 8]) The theory ZFC + WA0 proves that if A is the j-class

of n ∈ ω for which κn exists, then {κn : n ∈ A} is cofinal in ON, and
the Vκn for which n ∈ A form an elementary chain whose union is V .

As a corollary, we have:

Proposition 2.7 ([C06, Proposition 8.4]). Cofinal Axiom is derivable
from each of the theories ZFC + WA and ZFC + WA0.

For most purposes in this paper, the precise formalization of the state-
ment “κn exists” will not concern us, but in Section 3 we will need to know
that the complexity of the defining formula is quite low. First, we present
the definition of the three-place predicate jn(x) = y, given by the formula
Φ(n, x, y):

(2.1) Φ(n, x, y) ≡ n ∈ ω =⇒ ∃f Θ(f, n, x, y),

where

Θ(f, n, x, y) ≡ “f is a function” ∧ dom f = n+ 1 ∧ f(0) = x(2.2)
∧ ∀i

(
0 < i ≤ n⇒ f(i) = j(f(i− 1))

)
∧ f(n) = y.

Notice that the formula Θ(f, n, x, y) is Σ0. Now, the statement “κn exists”
is formalized as the Σ1 statement

(2.3) ∃f ∃y Θ(f, n, κ, y),

and whenever this statement is provable, y = κn.
In Section 3, we also need the following lemma from [C06], which says

that jn always maps ordinals to ordinals:

Lemma 2.8. ZFC + BTEE ` ∀f, n, x, y [Θ(f, n, x, y) ∧ “x is an ordinal”
⇒ “y is an ordinal” ].

(4) One such σ, mentioned in [C06, p. 383], is the instance of the Induction schema
for j-formulas that establishes the existence of jn(κ) for each n ∈ ω. For another result of
this kind, see [H01].
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As we mentioned in the Introduction, the significance of Amenabilityj

for our work here is the following:
Proposition 2.9 (Amenabilityj and Σ0-Separationj, [C06, Section 8]).

The theory ZFC + BTEE proves the following:

Amenabilityj ⇐⇒ Σ0-Separationj.

In the theory ZFC + WA, it is possible to define the self-application
operation j · j:

j · j =
⋃

α∈ON

j(j�Vα).

This self-application operation can be iterated inside ZFC + WA. The nth
iterate is denoted j[n]. In [C06, pp. 380–381] (see also [De00]) we prove:

Proposition 2.10. The theory ZFC + WA proves the following:

(1) ∀n ∈ ω crit(j[n]) = κn.
(2) ∀n ∈ ω ∀r ≥ n j[n](κr) = κr+1.

We also have the following:
Proposition 2.11. Suppose M̄ = (M,E, j) |= ZFC + WA, and suppose

M̄ |= n ∈ ω. Let k : M →M be defined by

k(x) = y ⇐⇒ M̄ |= j[n](x) = y.

Then (M,E, k) |= ZFC + WA.

Proposition 2.11 is a consequence of the following proposition, which is
mentioned in [Ka94, p. 323] (see also [C15, Lemma 98]):

Proposition 2.12. Suppose f : V → V is a function (not necessarily
definable in V ) for which f�X is a set for every set X. Suppose

(V,∈, j) |= ZFC + BTEE.

Then for all formulas φ(x1, . . . , xm) in the language {∈, f} (where f is a
unary function symbol) and all a1, . . . , am ∈ V ,

(V,∈, f) |= φ[a1, . . . , am] ⇐⇒ (V,∈, j · f) |= φ[j(a1), . . . , j(am)].

2.2. Forcing over possibly non-well-founded models of ZFC. Per-
forming forcing arguments over a possibly non-well-founded model does not
pose significant technical challenges, but sometimes care is needed in the
formulation of results. We follow the framework developed for this purpose
in [C07a]. That approach parallels closely the approach given in [J78] for
well-founded models, in which forcing conditions are elements of a com-
plete Boolean algebra; the partial order approach to forcing emerges as a
by-product of this approach. The Boolean-valued model approach has the
disadvantage of casting certain familiar results in terms of Boolean-valued
expressions rather than by way of the forcing relation. However, it has the
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advantage of simplifying the verification that Separationj holds when per-
forming set forcing from a ground model of ZFC + WA; see the end of Sec-
tion 3.

We review points from [C07a] and fix notation. We assume familiarity
with the results of [C07a] but reference the results from that paper as nec-
essary.

Let M = (M,E) be a (possibly non-well-founded) model of the lan-
guage {∈}; in particular, we assumeM is a model of ZFC. The symbol “∈”
will be used both for the formal symbol of the language and for the “real”
membership relation in the surrounding universe V (5).

We adopt the following notational conventions:

• For any X ∈ M , we let XE denote the following extension of X: XE =
{x ∈M : M |= xE X}.
• For any t,X, Y ∈M withM |= t : X → Y , we define graph(t) : XE → YE

by t(x) = y iffM |= t(x) = y.
• By convention, Vω ⊆M .
• We indicate that (M,E) satisfies an atomic formula x ∈ y at (a, b) by

writing
(M,E) |= aE b

rather than (M,E) |= a ∈ b.

Given a model M = (M,E) of ZFC and a B ∈ M such that M |=
“B is a complete Boolean algebra”, we build the Boolean-valued modelMB

in M in the usual way: MB =
⋃
α∈ONMB

α , where MB
0 = ∅; MB

α+1 is the
set of all functions f ∈ M such that dom f ⊆ MB

α and ran f ⊆ B; and
MB

λ =
⋃
α<λMB

α when λ is a limit. For notational convenience, we will
write MB for bothMB and (MB)E .

InM, we also define sets MB,γ for γ an ordinal inM, as follows:

(2.4) M |= MB,γ = MB ∩ Vγ .
By [C07a, Theorem 6(6)], it follows easily (in M) that, for any σ ∈ MB,
there are arbitrarily large α ∈ ON for which

(2.5) [[σ ∈ Vα]]B = 1 =⇒ ∃τ ∈MB,α [[σ = τ ]]B = 1.

Moreover, one can define B-names ṙα for ranks Vα so that, in M, for any
ordinal α and any strong limit λ greater than max{α, rank(B)},
(2.6) ṙα ∈ Vλ.

(5) Different kinds of models of ZFCj are possible, depending on one’s assumptions
about the surrounding universe. In this paper (as in [C06]), all models will live in a ZFC
universe (V,∈), fixed once and for all, and in particular if (M,E, i) is a model of ZFCj,
we assume i is definable in V . In [C06], such models are called sharp-like.
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As usual, define a first-order language LB = LM,B consisting of ∈ to-
gether with a constant for each member of MB. Formulas of LB are coded
in M so that the formulas form a definable class in M. We refer to the
formulas of LB as B-formulas. As usual, there is a Boolean truth value map
[[·]] = [[·]]MB , depending on B andM and defined withinM by recursion on
a well-founded relation, which assigns a value in B to each B-formula. See
[J78] for details.

Names of ground model elements x are denoted x̌. The canonical name
for the generic ultrafilter is u = {(b̌, b) : b ∈ B}. The usual forcing relation
 is defined inM by

b  φ iff b ≤ [[φ]]B.

Suppose P is a partial order and B = ro(P ). The canonical name for a
generic filter in P is g = {(p̌, p) : p ∈ P}. As noted in [C07a], inM, for each
p ∈ P , [[p̌ ∈ g↔ ě(p̌) ∈ u]]B = 1 where e : P → B is a dense embedding.

To obtain two-valued models fromMB that extend the ground modelM,
we collapse MB by a generic ultrafilter (in the usual way). If B is a com-
plete Boolean algebra in M, an ultrafilter U ⊆ BE is B-generic over M
if, whenever M |= X ⊆ B and XE ⊆ U , we have

∧
XE ∈ U . Equiva-

lently, U is B-generic over M if and only if, for each D ∈ M for which
M |= “D is dense in B − {0}”, DE ∩ U 6= ∅.

Given a B-generic ultrafilter U , define an equivalence relation ∼U onMB

by
τ1 ∼U τ2 iff [[τ1 = τ2]]MB ∈ U.

We denote by τU = τMU the ∼U -equivalence class containing τ . We let

(2.7) MU = {τU : τ ∈MB}.
Define a membership relation EU on MU by

σU EU τU iff [[σ ∈ τ ]]MB ∈ U.
As usual, EU respects equivalence classes. We have the following:

Theorem 2.13. Suppose φ(x1, . . . , xn) is a formula and τ1, . . . , τn ∈MB.
Then

MU |= φ
(
(τ1)U , . . . , (τn)U

)
iff [[φ(τ1, . . . , τn)]]MB ∈ U.

In particular,MU |= ZFC.

The analogues to the usual Forcing Theorems now follow as a corollary:

Theorem 2.14 (Forcing Theorems). Let ψ be a sentence of the B-lan-
guage forM.

(1) Suppose b ∈ BE. Then M |= b  ψ if and only if, for every U that
contains b and is B-generic overM, we haveMU |= ψ.

(2) MU |= ψ if and only if there is b ∈ U such thatM |= b  ψ.
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Next, we describe properties of the natural embedding ofM intoMU . We
revert for a moment to the more familiar context of transitive ground models
to highlight the differences that need to be introduced in the present context;
to avoid confusion, we denote the ground model N (rather than M). The
usual mappings when forcing over a countable transitive ground model N
with a generic ultrafilter U in B are given by

N→̌NB η
U−−→ NB/U

m−→ N [U ],

and m ◦ ηU is often denoted iU . (This decomposition is given explicitly in
[B85, Chapter 4]. The quotient NB/U for transitive N is denoted MU in
the present paper, equation (2.7) above, where we are considering possibly
nontransitive ground models M .)

In the present context, the map m, which is the Mostowski collapsing
function, is not generally an isomorphism since EU is typically non-well-
founded, but all the other maps are defined and used in the usual way.
Consequently, it is not generally true that M is a subset of the forcing
extension MU . Therefore, in our present context, we define the insertion
map that gives the canonical isomorphism sU :M→MU by sU = ηU ◦ ˇ ;
in other words, for all x ∈M ,

sU (x) = x̌U .

For our purposes, it is safe to assume that sU is the identity (6). Using
this identification, for each ordinal γ, we recursively define iγ,uU = iγ on
sU (MB,γ) by

(2.8) iγ(τ) = {iγ(σ) : σ EU dom τ ∧ τ(σ) ∈ uU}.
The maps iγ provide approximations to the collapsing map i : NB →

N [G] that is typically used to obtain the generic extension N [G] when the
ground model N is transitive. We show in [C07a] that these maps iγ form a
“coherent” collection in the following sense:

(2.9) MU |= ∀α, β (α < β ⇒ iα = iβ�MB,α).

See discussion following [C07a, Theorem 15] for more about the role of the
maps iγ .

3. Proof of indestructibility of WA. In this section, we prove the
Main Theorem, that set forcing preserves ZFC + WA. We follow the outline
given in the Introduction. We first show that ifM = (M,E, j) is a model of
ZFC + BTEE and crit(j) = κ, and if in M , B is a complete Boolean algebra
that belongs to Vκ, and if U is aB-generic ultrafilter overM, then defining k :
MU → MU by k(σU ) = (j(σ))U yields an elementary embedding, and ifM

(6) This point is elaborated in [C07a].
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satisfies ZFC + WA0 (ZFC + WA), then so does (MU , EU , k). As we attempt
to show that the same kind of lifting preserves ZFC + WA, we observe that
the proof that Separationj holds in the extension requires some care since
the meaning of [[φ]] for arbitrary j-formulas φ is not immediately apparent.
To handle this issue, we will develop an extended forcing methodology in
which the symbol j is part of the forcing language, at least in the case of
notions of forcing having rank < κ.

3.1. Small forcing preserves BTEE. We begin with a few preliminar-
ies. In Section 2, we mentioned that when forcing over (M,E) to obtain an
extension (MU , EU ), we identify M with its image s′′UM in MU (see [C07a]).
In the present context, where we will be dealing with models of the language
{∈, j}, this identification is also justified when sU turns out to be an iso-
morphism of {∈, j}-structures (and not just of {∈}-structures). The obvious
criterion for this to happen—that is, for sU : (M,E, j)→ (s′′UM,EU , k�s′′UM)
to be an isomorphism—is the following:

(3.1) k ◦ sU = sU ◦ j.
For the examples that will concern us, this criterion will always be satisfied.

We will call a function k : MU →MU satisfying (3.1) a weak lifting of j,
and, since in this case sU is an isomorphism of {∈, j}-structures, we will
identify M with its image under sU and also write k ⊇ j. A weak lifting k
of j that is also an elementary embedding MU →MU will be called a lifting
of j.

A notational convention that we adopt is the following: We will indicate
models of the language {∈, j} with a bar, and models of {∈} without a bar.
Thus, a typical model of ZFCj will be denoted M̄ = (M,E, j), whereas
the corresponding ∈-model will be denoted M = (M,E). We will switch
between these models without special mention.

We record some observations about (weak) liftings.

Proposition 3.1. Let M̄ = (M,E, j) be a model of ZFC + BTEE.
Suppose that M |= “B is a complete Boolean algebra” and U is B-generic
over M. Suppose also that k : MU → MU is a weak lifting of j and M̄U =
(MU , EU , k) is a model of ZFCj. Then we have the following:

(1) (MU , EU , k) |= Critical Point.
(2) Suppose φ(x1, . . . , xn) is a Σ0 L-formula. Then for all a1, . . . , an ∈M ,

M̄ |= φ[a1, . . . , an] ⇐⇒ M̄U |= φ[sU (a1), . . . , sU (an)].

(3) The following equivalence holds:

M̄ |= “jn(κ) exists” ⇐⇒ M̄U |= “kn(κ) exists”.

Moreover, if M̄ |= jn(κ) = β, then M̄U |= kn(κ) = β.
(4) The theory ZFCj + Cofinal Axiom holds in M̄U = (MU , EU , k).
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(5) Suppose that k :MU →MU is in fact a lifting. Then

M̄ |= ZFC + BTEE =⇒ M̄U |= ZFC + BTEE.

Proof of (1). This follows from the fact that sU is the identity on ordinals
and M̄ |= Critical Point.

Proof of (2). This follows from Proposition 2.1 because s′′UM is a tran-
sitive subset of MU and φ is Σ0.

Proof of (3). This follows from Lemma 2.8 and from (2), using the Σ0

formula Θ(f, n, κ, β) that asserts jn(κ) = β (see (2.2)).

Proof of (4). Since M̄ and M̄U have the same ordinals, this follows
immediately from the Cofinal Axiom and part (3).

Proof of (5). Since k is a weak lifting, Critical Point holds. Since k is
elementary, Elementarity holds.

The most familiar way of obtaining liftings when preserving embeddings
of the form V → M or M → N also works here to produce liftings, as long
as the rank of the notion of forcing is small and the ground model satisfies
at least ZFC + BTEE. As usual, suppose we are givenM = (M,E, j), B, U .
We define k onMU by

(3.2) k(σU ) = (j(σ))U

for all σ ∈ MB. The map k is called the standard extension of j by U .
Certainly, if k is well-defined, then k must at least be a weak lifting since for
all x ∈M ,

k(sU (x)) = k(x̌U ) = (j(x̌))U = [j(x)∨]U = sU (j(x)).

Proposition 3.2 (Small rank proposition). Suppose M̄ = (M,E, j) is
a model of ZFC+BTEE and B is a complete Boolean algebra in M . IfM |=
BE Vκ, then for any U that is B-generic over M, the standard extension
k of j by U is a well-defined lifting. Therefore, the theory ZFC + BTEE is
preserved by forcings having small rank.

Proof. Because j(B) = B and j�B = idB, we have j′′MB ⊆MB. There-
fore, elementarity of j guarantees that inM,

(3.3) [[σ = τ ]]B = [[j(σ) = j(τ)]]B and [[σ ∈ τ ]]B = [[j(σ) ∈ j(τ)]]B.

It follows that k is well-defined and isomorphic to its range. Also, since
M |= j(σ)EMB, the range of k is included in MU . Now, using (3.3),
the usual argument by induction on complexity of formulas shows that
k : MU → MU is an elementary embedding. The final clause now follows
by Proposition 3.1(5).
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It is now easy to show that ZFC + BTEE is preserved by small forcings
as well, since any such forcing B is isomorphic to a forcing C of low rank.
The elementary embedding on the forcing extension by B is obtained as a
conjugate of the elementary embedding that works for the extension by C.

Corollary 3.3 (Small forcing proposition). Suppose M̄ = (M,E, j) is
a model of ZFC + BTEE and B is a complete Boolean algebra in M such
thatM |= |B| < κ. Then for any B-generic ultrafilter U overM, there is a
lifting k : MU →MU such that (MU , EU , k) |= ZFC + BTEE. In particular,
small forcing preserves BTEE.

Proof. GivenM and B as in the hypothesis, let C and i be in M such
that, in M, C E Vκ is a complete Boolean algebra and i : B → C is an
isomorphism. Let U be B-generic over M and let W = graph(i)′′U be the
C-generic ultrafilter induced by i [C07a, Proposition 18(1)]. Let kW : MW →
MW be the standard extension of j, as in Proposition 3.2. Let ı̂ :MU →MW

be the isomorphism induced by i [C07a, Proposition 18(2)]; since we are
assuming M ⊆ MU and M ⊆ MW , it follows that ı̂ fixes M (see [C07a,
proof of Proposition 18(1)]).

(3.4)
MU

kU //

ı̂
��

MU

ı̂
��

MW
kW //MW

Letting kU = ı̂−1 ◦ kW ◦ ı̂ yields an elementary embeddingMU →MU . As
ı̂ fixes M , for each x ∈M we have kU (x) = kW (x) = j(x); that is, k ⊇ j.

Since k is a lifting, it follows from Proposition 3.1(1) that (MU , EU , kU ) |=
Critical Point.

3.2. Small forcing preserves WA0. We show next that if small forcing
is performed over a model (M,E, j) of ZFC + WA0, then j can be lifted to
a WA0-embedding defined on the extension.

Theorem 3.4 (Small forcing preserves WA0). Suppose M̄ = (M,E, j) |=
ZFC + WA0. Suppose that in M, B is a complete Boolean algebra and
|B| < κ. Then for any ultrafilter U that is B-generic over M, there is a
lifting k :MU →MU such that (MU , EU , k) |= ZFC + WA0.

Proof. Given M̄ = (M,E, j), B, and U as in the hypothesis, we let
M̄U = (MU , EU , kU ) be the model obtained in Corollary 3.3, where kW :
MW → MW is the standard extension of j and kU = ı̂−1 ◦ kW ◦ ı̂ (see
diagram (3.4)).

We observe first that Cofinal Axiom holds in M̄U = (MU , EU , kU ); this
follows immediately from the fact that kU is a lifting (Proposition 3.1(4)).
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We show next that M̄U |= Amenabilityj. We first prove the following
claim:

Claim 3.5. Define φ : (MW , EW , kW )→ (MU , EU , kU ) by φ(x) = ı̂−1(x)
∈ MU . Then φ is an isomorphism of {∈, j}-structures. In particular,
(MW , EW , kW ) and (MU , EU , kU ) are elementarily equivalent.

Proof of Claim. We observe first that φ has an inverse ψ : MU → MW

defined by ψ(y) = ı̂(y). To see that φ is an isomorphism, it suffices to prove
that φ preserves the unary operation. We have, for each x ∈MW ,

φ(kW (x)) = ı̂−1(kW (x)) = ı̂−1kW ı̂̂ı
−1x = kU ı̂

−1x = kU (φ(x)),

as required.

To prove M̄U |= Amenabilityj, it suffices by Claim 3.5 to prove M̄W |=
Amenabilityj. Recall that by Proposition 3.1(3), M̄W |= “knW (κ) exists” if
and only if M̄ |= “jn(κ) exists”, and that, in M̄, knW (κ) = jn(κ) whenever
they both exist. We write κn = (jn(κ))M .

Since the κn are cofinal (by Proposition 2.6(2)), to prove Amenabilityj,
it suffices to show that

(3.5) M̄W |= ∀n (knW (κ) exists ⇒ ∃e e = kW �VknW (κ)).

The idea for the proof is to define e by e(σW ) = (j(σ))W whenever σW
belongs to (Vκn)MW , as in the definition of the standard extension. The
point that needs to be verified is that the range of such a map e is never
unbounded. This, however, is guaranteed by the fact that each element of
(Vκn)MW has a name in (Vκn)M, ensuring that images by e are uniformly
bounded. Here are the details:

Since M̄ |= WA0, we may make the following definition in M̄: We
define in for each n ≥ 1 for which κn exists by in = j�Vκn . We define
Rκn ∈MW by (see (2.6))

(3.6) κn exists =⇒ Rκn = (V̌κn)W .

That is, inMW , Rκn denotes (Vκn)M.
In M̄W , fix an n for which κn exists. Using the set of names MB,κn =

MB ∩ Vκn defined in M, we can obtain, inside MW , the usual transitive
forcing extension Rκn [uW ] of Rκn . Since, by (2.6), every set in (Vκn)MW has
a name in MB,κn , it follows thatMW |= Vκn = Rκn [uW ].

We now define, in M̄W , the restriction k�Vκn as a class in Rκn+1 [uW ] by

e = {(σW , y)EW Vκn+1 : y = (in(σ))uW and σ EW MB,κn}.

Certainly MW |= eEW V(κn+1)+1. But now M̄W |= e = k�Vκn . Thus we
have established (3.5), and this completes the proof of Theorem 3.4.
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3.3. Set forcing preserves WA. We conclude this section with a proof
of the main result, that set forcing cannot destroy WA. As a first step, we
show that forcing by a notion of forcing of rank below the critical point of the
embedding cannot destroy WA. Though the latter is not a surprising result,
its proof is necessarily quite different from the proof of the corresponding
result for WA0. In the latter case we were able to rely on the equivalence of
Amenabilityj with Σ0-Separationj; this reliance allowed us to avoid dealing
with the problem of showing directly that Σ0 instances of Separationj hold in
the extension. What makes the latter approach seem difficult at first is that
it is not immediately clear how to evaluate [[φ]]B for arbitrary j-formulas φ.
Now to prove that WA holds in a forcing extension, we must address this
issue. We do this as a preliminary to the proof of the main result. For certain
simple j-formulas φ, the meaning of [[φ]]B is clear, as long as B lies in (Vκ)M.
For instance, [[j(σ) = j(τ)]]B must have value [[σ = τ ]]B by elementarity
of j. Using a similar insight, one can give meaning to [[φ]]B for each atomic
j-formula φ, and then proceed by induction on the complexity of φ to define
[[φ]]B in all cases.

As a starting point, we assume M̄ = (M,E, j) |= ZFC + WA and
M |= “B is a complete Boolean algebra in Vκ”. Our inductive procedure for
formally extending [[ · ]] to all j-formulas is carried out in V (standard j-
formulas can be viewed as having been coded as sets in V ).

To handle atomic φ (the most important case), we first recall that [[ · ]]MB ,
restricted to atomic ∈-formulas, is definable in M by an ∈-formula, which
is obtained by induction on a suitable well-founded relation inM (see [B85,
p. 14]). We claim that there is a unique extension of this restriction of [[ · ]]MB
that is definable in M̄ and that respects elementarity of j. Moreover, as we
will show, it suffices to show that this extension of [[ · ]] computes the values
of atomic j-formulas in important special cases according to the following
scheme:

[[σ ∈ jn(τ)]]MB =
∨

t E dom(jn(τ))

(jn(τ)(t) ∧ [[σ = t]]B),

[[jn(σ) ∈ τ ]]MB =
∨

t E dom(τ)

(τ(t) ∧ [[jn(σ) = t]]B),

[[σ = jn(τ)]]MB =
∧

sE dom(σ)

(σ(s)→ [[s ∈ jn(τ)]]B) ∧
∧

t E dom(jn(τ))

(jn(τ)(t)→ [[t ∈ σ]]B),

for all n ∈ ωV .
The scheme given above appears to be the usual recursive definition of

[[ · ]]B, but it is important to recognize that such a definition is not generally
permissible in ZFC + WA if it involves j-formulas. Instead, as we mentioned
above, these formulas are obtained by using elementarity of j; in particular,
we have applied jn to the following formulas, each of which holds inM:
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∀xEMB
[
[[x ∈ τ ]]B =

∨
t E dom(τ)

(τ(t) ∧ [[x = t]]B)
]
,

∀xEMB
[
[[σ ∈ x]]B =

∨
t E dom(x)

(x(t) ∧ [[σ = t]]B)
]
,

∀xEMB
[
[[x = τ ]]B =

∧
sE dom(x)

(x(s)→ [[s ∈ τ ]]B) ∧
∧

t E dom(τ)

(τ(t)→ [[t ∈ x]]B)
]
.

To see that our scheme of specialized atomic formulas suffices for the
computation of all atomic j-formulas, which are of the form

jm(σ) = jn(τ) and jm(σ) ∈ jn(τ),

we show how to obtain the computation of these more general formulas in
a typical case. Assume m < n; we show how [[jm(σ) ∈ jn(τ)]]B is computed
inM: Let µ = jn−m(τ)EMB. The usual computation of [[σ ∈ µ]]B inM is
given by

[[σ ∈ µ]]B =
∨

t E dom(µ)

(µ(t) ∧ [[σ = t]]B).

Applying jm to this formula (and replacing µ by jn−m(τ)) gives, inM,

[[jm(σ) ∈ jn(τ)]]B =
∨

t E dom(jn(τ))

(jn(τ)(t) ∧ [[jm(σ) = t]]B).

Having extended the definition of [[ · ]]B to include all atomic j-formulas,
we can now complete the induction on the complexity of the j-formula φ.
But the ¬, ∧, and ∃ cases are all identical to the corresponding clauses in
the usual definition of [[φ]]B when φ is an ∈-formula (7). This, therefore,
completes the definition of [[φ]]MB for all j-formulas φ.

Using elementarity of j, one shows that all axioms of first-order logic for
the language L = {∈, j} have Boolean value 1, and that [[ · ]] continues to
preserve modus ponens (all this follows from the simple observation that,
for all σ, τ , [[σ = τ ]]M̄B = [[j(σ) = j(τ)]]M̄B ; see [J89]). Of course, all ax-
ioms of ZFC—restricted to ∈-formulas—continue to have Boolean value 1.
We next show that each instance of Separationj must also have Boolean
value 1:

(7) For easy reference, we reproduce this definition from [C07a]:

[[σ ∈ τ ]]B =
∨

t E dom(τ)
(τ(t) ∧ [[σ = t]]B),

[[σ = τ ]]B =
∧

sE dom(σ)
(σ(s)→ [[s ∈ τ ]]B) ∧

∧
t E dom(τ)

(τ(t)→ [[t ∈ σ]]B),

[[ψ ∧ φ]]B = [[ψ]]B ∧ [[φ]]B ,

[[¬ψ]]B = ([[ψ]]B)∗,

[[∃x ψ(x)]]B =
∨

t EMB
[[ψ(t)]]B .
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Lemma 3.6 (Preservation of Separationj). Suppose M̄ = (M,E, j) |=
ZFC + WA. Suppose that

M |= “B is a complete Boolean algebra and BE Vκ”.

Suppose φ(x, ~y) is a j-formula. Then

(3.7) [[∀~a ∀A ∃X ∀z [z ∈ X ⇔ z ∈ A ∧ φ(z,~a)]]]M̄B = 1.

Remark. The formula (3.7) is the instance of Separationj obtained
from φ.

Proof of Lemma 3.6. Now that we are able to compute [[ψ]]MB for j-
formulas ψ, the usual proof of Separation in a Boolean-valued model of set
theory can be used without modification. In particular, arguing in M̄, given
τ,~aEMB, we define σ by

σ = {(t, b)E dom τ ×B : b = τ(t) ∧ [[φ(t,~a)]]}.
By Separationj, σ is a set. Certainly σ EMB, and by the usual argument
[J78], one shows that for all t EMB,

[[t ∈ σ]]B = [[t ∈ τ ]]B ∧ [[φ(t,~a)]]B.

Now suppose U is B-generic over M, k : MU → MU is the standard
extension of j, and M̄U = (MU , EU , k). We know from Theorem 3.4 that k
is in fact a WA0-embedding. To prove M̄U |= ZFC + WA, we would like to
use Lemma 3.6; however, for an argument of this kind to be valid, we need to
know that usual the Łoś-like theorem for collapsing Boolean-valued models
(Theorem 2.13) extends to j-formulas; this result in turn depends on fullness
of MB with respect to j-formulas. These verifications are straightforward,
but we give the highlights of the proofs for the sake of completeness; proofs
are modeled after the proofs of similar results that appear in [J78]:

Lemma 3.7. Assume M̄ and M̄U are as above.

(1) In M̄, MB is full with respect to L-formulas. That is, for any L-formula
φ(x, x1, . . . , xn), and all τ1, . . . , τn ∈MB, there is τ ∈MB such that

M̄ |= [[φ(τ, τ1, . . . , τn)]]B = [[∃x φ(x, τ1, . . . , τn)]]B.

(2) For any L-formula φ(x1, . . . , xn), and all τ1, . . . , τn ∈MB,

M̄U |= φ((τ1)U , . . . , (τn)U ) iff [[φ(τ1, . . . , τn)]]M̄B ∈ U.
Proof of (1). We argue in M̄. We will obtain τ such that

(3.8) [[∃x φ(x, τ1, . . . , τn)]]B ≤ [[φ(τ, τ1, . . . , τn)]]B.

This will suffice since verification of ≥ is immediate.
Let b = [[∃x φ(x, τ1, . . . , τn)]]B. Let

Db = {a ≤ b : there is σa such that a ≤ [[φ(σa, τ1, . . . , τn)]]B}.
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Clearly, Db is open and dense below b. Let A be a maximal antichain be-
low b included in Db. Obviously,

∨
A ≥ b. Use the Mixing Lemma to ob-

tain σ such that for each aE A, a ≤ [[σ = σa]]B. It follows that for each
a ∈ A, a ≤ [[φ(σa, τ1, . . . , τn)]]B, whence b ≤ [[φ(σ, τ1, τ1, . . . , τn)]]B. This
establishes (3.8).

Proof of (2). The proof is by induction on the complexity of the L-
formula φ. We argue in M̄ (recall that we are assuming that (Vω)V ⊆ M).
As in the usual proof, fullness of MB with respect to j-formulas is used to
handle the existential quantifier case, and the cases ¬,∧ are straightforward.
We prove the result for atomic L-formulas.

As a preliminary, we prove that for every nE ωV ,

(3.9) kn(σU ) = (jn(σ))U .

The base case n = 1 holds since k is the standard extension of j. But now

kn+1(σU ) = k(kn(σU )) = k((jn(σ)U )

= k(µU ) (where µ = jn(σ))

= (j(µ))U = (jn+1(σ))U .

We prove the following three equivalences for each nE ωV :

σU EU k
n(τU ) ⇐⇒ [[σ ∈ jn(τ)]]B ∈ U,

kn(σU )EU τU ⇐⇒ [[jn(σ) ∈ τ ]]B ∈ U,
σU = kn(τU ) ⇐⇒ [[σ = jn(τ)]]B ∈ U.

The proofs in each case are similar; we prove the first. Let µ = jn(τ). By
the standard theorem,

σU EU µU ⇐⇒ [[σ ∈ µ]]B ∈ U.
Therefore, it suffices to show µU = (jn(τ))U ; but this follows from (3.9).

Again, we have not directly dealt with the more general atomic formulas

jm(σ) ∈ jn(τ) and jm(σ) = jn(τ).

However, the result for these cases follows from the result for the three
simpler atomic formulas above. We show how this works for the formula
jm(σ) ∈ jn(τ) when m < n. Let µ = km(σ). By the result just proven,

µU EU k
n−m(τU ) ⇐⇒ [[µ ∈ jn−m(τ)]]B ∈ U.

But since km(σ) = (jm(σ))U (by (3.9)), the result follows.

Our work in the last few paragraphs amounts to an abbreviated devel-
opment of Boolean-valued models of the theory ZFC + WA in the language
{∈, j} for the special case in which the Boolean algebra B has rank below κ;
in other words, for this special case, we have shown how to incorporate j
into the forcing language. A complete treatment would require a definition
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of Boolean-valued models for the language {∈, j} (which is given in [J89]);
MB would be defined in the usual way; the operator [[ · ]] would be defined
recursively as usual for ∈-formulas and then extended in the way described
above for all j-formulas; one would then verify that MB satisfies all axioms
of first-order logic for the language L, and that all axioms of ZFC, restricted
to ∈-formulas, hold in MB. The rest of the development would then proceed
as above.

We can now show that forcings of low rank do not destroy WA.

Theorem 3.8 (Low rank forcing preserves WA). Forcing by a complete
Boolean algebra of low rank does not destroy WA. In particular, given a
model M̄ = (M,E, j) of ZFC + WA, with M |= “B is a complete Boolean
algebra and rank(B) < κ”, and given any U that is B-generic over M, if
k : MU →MU is the standard lifting of j, then (MU , EU , k) |= ZFC + WA.

Proof. By Theorem 3.4, M̄U = (MU , EU , k) |= ZFC + WA0. By Lem-
mas 3.6 and 3.7(2), M̄W |= Separationj. Thus, M̄U |= ZFC + WA.

We turn to a proof of the Main Theorem.

Theorem 3.9 (Set forcing preserves WA). Suppose M̄ = (M,E, j) |=
ZFC + WA. Suppose B ∈ M is such that M |= “B is a complete Boolean
algebra”. Suppose U is B-generic over M. Then there is a k : MU → MU

such that (MU , EU , k) |= ZFC + WA.

Proof. Let B and U be as in the hypothesis. Let n be such that M |=
BE Vκn . Recall from Proposition 2.10 that the nth self-applicative iterate
j[n] is also an elementary embedding M → M and has critical point κn.
Moreover, it follows from Proposition 2.11 that, if we define ` : M →M by

`(x) = y ⇐⇒ M̄ |= j[n](x) = y,

then (M,E, `) |= ZFC + WA. Since M |= BE Vκn , it follows from Theo-
rem 3.8 that (MU , EU , k) |= ZFC+WA, where k is the standard lifting of `.

4. Appendix: Unsuitability of countable transitive ground mod-
els of extensions of ZFCj. In this Appendix we address the question
whether it is really necessary to use the at times cumbersome machinery
for forcing over nonstandard models. Why cannot we carry out forcing ar-
guments in the usual way? Start with a countable transitive ground model
and build generic extensions? The seemingly obvious answer is that the the-
ory ZFC + Elementarity + Nontriviality has the same consistency strength
as ZFC, while existence of a transitive model of ZFC + Elementarity +
Nontriviality has consistency strength at least as that of an inaccessible car-
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dinal (Propositions 2.2 and 2.3). One could counter (8) that this disparity
is no different from the disparity we find when forcing over ZFC: Consis-
tency of ZFC does not imply existence of a transitive model of ZFC; and
there are tricks that allow us to circumvent this disparity. The purpose of
this Appendix is to demonstrate that such tricks do not solve the prob-
lem in the present context; that, in the context of extensions of the theory
ZFC + Elementarity + Nontriviality, assuming we can carry out a forcing
argument starting from a transitive ground model is never justified.

Ordinarily, in carrying out an argument with forcing, when one starts
with a countable transitive model of ZFC, one implicitly uses the fact,
derivable from Reflection, that one may prove from ZFC there is a tran-
sitive model of any finite list of ZFC axioms (cf. [Ku80, VII.1]). A folk-
lore result (9) is that from ZFC − Replacement one can prove the equiva-
lence of Reflection with Replacement + Infinity. The fact that Replacement
(even Σ1-Replacement) for j-formulas is inconsistent with ZFC + BTEE (re-
call Proposition 2.5) already adequately demonstrates that the usual logic
for assuming transitive ground models is not applicable in forcing from
ZFC + Elementarity + Nontriviality or any of its extensions. This limita-
tion becomes strikingly apparent when one wishes to force from the the-
ory ZFC + WA0 since this theory is known [H01] to be finitely axiomatiz-
able.

As we show next, one may not apply the usual logic to justify start-
ing with a countable transitive model even for the weaker theory ZFC +
Elementarity + Nontriviality.

We review in more detail the usual justification for assuming existence of
a countable transitive model of ZFC, and show that application of parallel
logic for the theory ZFC+Elementarity +Nontriviality leads to a proof that
ZFC is inconsistent. We follow the treatment of this topic given in [Ku80,
VII.9(1b)]. By Reflection, given a model M of ZFC, one may argue that the
theory

T = ZFC + {σc : σ is a ZFC axiom}+ “c is countable and transitive”

in the language {∈, c} is finitely satisfiable (10) and hence consistent. Thus
a forcing proof of the relative consistency of a sentence θ with ZFC can be
understood to have the form

(8) Indeed, the reason for this Appendix is to address such concerns, presented to the
author by more than one well-established set-theorist.

(9) See for example the Stanford Encyclopedia of Philosophy article on set theory,
available online at https://plato.stanford.edu/entries/set-theory/.

(10) Let F = {σm(1), . . . , σm(r), σ
c
n(1), . . . , σ

c
n(s)} denote a finite set of axioms of the

new theory. Since M |= Reflection, there is A ∈ M such that M |= “A is countable and
transitive” and M |= σAn(1) ∧ · · · ∧ σAn(s). Now (M,A) |= F .

https://plato.stanford.edu/entries/set-theory/
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(4.1) Con(ZFC)⇒ Con(T )⇒ Con(ZFC + θ),

where the second implication is demonstrated by the forcing argument.
To see where this logic goes wrong for the theory ZFC + Elementarity +

Nontriviality, we begin by obtaining an analogue to the theory T described
above, relative to extensions of ZFCj. In the construction of T above, there
were three sorts of axioms:

(1) Axioms that describe the outer universe (namely, the axioms of ZFC).
(2) Axioms that describe the inner universe (namely, the axioms σc for

σ ∈ ZFC).
(3) Axioms that describe the sort of object c stands for (namely, that c is

countable and transitive).

In the setting of models of extensions of ZFCj, we formulate appropriate
analogues (1′)–(3′) for (1)–(3). In order to observe our convention of con-
sidering only sharp-like models of extensions of ZFCj (see footnote (5), or
[C06]), the axioms for (1′) must be ZFC only. In order to formulate (2′),
we need to have an appropriate structure in which to interpret relativized
sentences. For T , relativizing ZFC axioms to the constant c was adequate,
but it would not be adequate in this new setting since we must still inter-
pret the symbol j. Thus, we introduce a second constant symbol i. For any
L-formula φ, the formula φc,i is obtained by restricting quantifiers to c and
replacing each occurrence of j with i. Since we want the “inner universe” to be
a model of the extended theory S, the axioms for (2′) must be {σc,i : σ ∈ S}.
Finally, for (3′), we assert that c is countable and transitive and that i is a
function c→ c.

Summarizing, given a theory S ⊇ ZFCj, the theory T (S) in the language
{∈, j, c, i} consists of the following:

ZFC+{σc,i :σ ∈ S}+“c is countable and transitive”+“i is a function c→c”.

Now we turn to the theory S = ZFC + Elementarity + Nontriviality. We
show that it is impossible to prove

(4.2) Con(S)⇒ Con(T (S))

using methods formalizable in ZFC, unless ZFC itself is inconsistent; in other
words, the first step of logic in (4.1) to justify the use of a transitive ground
model is not valid for such theories S.

Our argument is modeled after the proof [Ku80, IV.10] that the consis-
tency of an inaccessible is not provable from ZFC. We begin with an outline
of the structure of the proof: Suppose (4.2) can be proven with methods
formalizable in ZFC, so

(4.3) ZFC ` dCon(S)⇒ Con(T (S)) e.
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We will show that

(4.4) T (S) ` dCon(ZFC) e.

Recall from Proposition 2.2(1) that

(4.5) ZFC ` dCon(ZFC)⇒ Con(S) e.

Combining (4.5) and (4.3) with (4.4), we see that

T (S) ` Con(T (S)),

whence T (S) is inconsistent. But by (4.2), S must also be inconsistent. Fi-
nally, by Proposition 2.2(1), it follows that ZFC itself must be inconsistent.
Thus, to obtain the result, it suffices to prove (4.4).

To prove (4.4), we must prove more than the fact that, for all finite
subsets F ⊆ ZFC, F = {σ1, . . . , σk}, we have T (S) ` ∃M (σM1 ,∧ · · · ∧ σMk ).
We must rather prove that T (S) ` ∃M ∀p ∈ dZFC e Sat(p,M, ∅) (11). Recall
also that ZFC ` “λ is inaccessible” ⇒ ∀p ∈ dZFC e Sat(p, Vλ, ∅).

Working in the extended language {∈, j, c, i}, we can argue as in Propo-
sition 2.3 to show

T (S) ` (Critical Point)c,i.

Here is an outline of the proof: Suppose M = (M,E,A, i) |= T (S). In M,
define x, κ such that x ∈ A, i(x) 6= x, and κ is least for which xE Vκ+1.
(This step requires further explanation. Since we are not assuming that (A, i)
satisfies Separationj, there is no reason to suppose that, inside A, we can find
such a “least κ”. However, we can find such a κ in M since only ordinary
Separation for ∈-formulas is required to establish this.) Now, in M, x, κ
satisfy the same definition relativized to (A,E, i) since, in M, V (A,i)

κ+1 =
Vκ+1 ∩A, by transitivity of A in M . Therefore,

M |= “(A,E, i) |= κ is the critical point of i”.

Next, we can argue as in Proposition 2.2(2) (12) to show

T (S) ` (“crit(j) is inaccessible”)c,i.

Here is an outline of the proof: SupposeM = (M,E,A, i) |= T (S). Without
loss of generality, assume V V

ω ⊆ M . Suppose M |= (κ = crit(i))(A,i). The
map i fixes each standard integer and also fixes ω. Arguing inM, by leastness
of κ and elementarity of i (with respect to standard-length ∈-formulas),
i(f) = f whenever f : α→ κ and α < κ. This establishes that κ is a regular

(11) Here, Sat is the formalized satisfaction relation: In general, Sat(u,M, b) asserts
that u encodes the ∈-formula φ(x1, . . . , xm) and 〈M,E(M)〉 |= φ(b(1), . . . , b(m)), where b
is a function defined on ω that specifies set parameters. See [C06] and [Dr74].

(12) See [C06, p. 338] for details.
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cardinal in (A, i). A similar argument shows that for all α < κ in (A, i),

(there is no surjection P (α)→ κ)(A,i),

which can be used to show that κ is a strong limit in (A, i). Therefore, inM,
(κ is inaccessible)(A,i).

Next, we derive, in the usual way (13),

T (S) `
[
∃λ
(
λ = crit(j) ∧ ∀p ∈ dZFC e Sat(p, Vλ, ∅)

)]c,i
.

LetM = (M,E,A, i) |= T (S) and let (λ = crit(i))(A,i). Then

M |= ∀p ∈ dZFC e (Sat(p, Vλ, ∅))A,
whence

M |= ∀p ∈ dZFC e SatA(p, V A
λ , ∅).

Since Sat is a standard-length formula and A is, inM, a transitive model of
standard-length ZFC axioms, Sat is absolute for A,M. Thus

M |= Con( dZFC e),

as required.
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