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What Is The Right Notion Of Infinity?

• Cantor convinced the mathematical world that the mathematical uni-
verse should include infinite sets.

• Ironically, as ZFC (including Cantor’s Axiom of Infinity) emerged, so
did the first large cardinals, which would eventually be shown to be
underivable from ZFC. These can be viewed as “strong axioms of
infinity”.

• A long-standing question: How strong should the Axiom of Infinity be?
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Early Attempts To Resolve The Question

• (Generalization) Some large cardinal properties, like inaccessibility and
measurability, are already properties of ω. From Cantor’s view, an
intuition about the universe is that it is reasonably uniform, so these
properties should not be present in just one infinite cardinal. Therefore,
inaccessibles and measurables can reasonably be supposed to exist.
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Early Attempts To Resolve The Question

• (Generalization) Some large cardinal properties, like inaccessibility and
measurability, are already properties of ω. From Cantor’s view, an
intuition about the universe is that it is reasonably uniform, so these
properties should not be present in just one infinite cardinal. Therefore,
inaccessibles and measurables can reasonably be supposed to exist.

• (Reflection) Some large cardinal properties can be argued to hold for
the class Ord of ordinals, such as inaccessibility and Mahloness. From
Cantor’s view, since the “Absolute Infinite” is beyond mathematical
determination, Ord couldn’t be uniquely defined by a first-order for-
mula, so some actual sets must also have these properties. Therefore,
inaccessibles and Mahlos can reasonably be supposed to exist.
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The Contemporary View

• Most of the stronger large cardinal properties cannot be motivated
using these simple heuristics, so more complicated heuristics have de-
veloped.

• These days, there is wider acceptance among set theorists of a much
larger range of large cardinals, mostly because of the deep relationships
that have been discovered between larger large cardinals and sets of
reals.

• Whether researchers “believe” in large cardinals or not, large cardinals
are used without restriction in research.

• Despite evolving heuristics, there is to date no generally agreed upon
extension of ZFC from which the large cardinals that are used in prac-
tice can be derived.
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Our Objective

Take another look at the Axiom of Infinity and return to simple heuristics
to motivate a reasonably natural extension of ZFC from which virtually all
large cardinals can be derived.
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Lawvere’s Theorem (1969) Suppose V is a model of ZFC−Infinity. Then
the following are equivalent:

(A) V satisfies the Axiom of Infinity
(B) There is a functor j : V → V that factors as a composition G ◦ F of

functors satisfying:
(1) F a G (F is left adjoint to G)
(2) F : V → V �

(3) G : V � → V is the forgetful functor, defined by G(A → A) = A.
In particular, F preserves all colimits and G preserves all limits.

V
j - V
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V �

When it exists, we call j the Lawvere functor.
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Notes About Lawvere’s Theorem

• Originally formulated for cartesian-closed categories (not for models of
ZFC−Infinity) but our statement follows immediately from Lawvere’s.

• The quantification of proper classes can be eliminated in the usual
ways, without expanding to a class theory.

• The category V � has as objects all self-maps f : a → a from V ; its
arrows are of the form uα : f → g, defined by commutative diagrams
of the following form:

a
f - a

α

? ?

α

b
g - b
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• Adjoints

Definition. (Adjoints) Suppose F : C → D and G : D → C are functors.
Then F is left adjoint to G, and we write F a G, if there is, for each
a ∈ C, b ∈ D, a bijection θab : HomD(F (a), b) → HomC(a, G(b)) that is
natural in a and b. In this case 〈F, G, θ〉 is said to be an adjunction.

Example. F : Set → V ect : X 7→ UX , G : V ect → Set : U → U . F a G
since every map X → U extends uniquely to UX → U .
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Idea Behind The Proof

• If Axiom of Infinity holds, a left adjoint F : V → V � for the forgetful
functor G : V � → V is defined on objects as follows:

For any set A, F (A) is defined to be the endo A×ω
1A×s→ A×ω (where

s is the successor function on ω).

• For the other direction, if we have j = G ◦ F , with F a G, where
G : V � → V is the forgetful functor, we locate a “critical point” for j:
• j(0) = 0 (F preserves colimits, hence 0; clearly G(0 → 0) = 0)
• j(1) is infinite (properties of the adjunction allow us to conclude

that j(1) is a “natural numbers object”, which must be infinite)
and so the Axiom of Infinity follows.
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Significance of Lawvere’s Theorem

• The theorem provides us with a “global” version of the Axiom of In-
finity. The local version simply asserts the existence of a certain set
in the universe, but the global version tells us that the universe comes
equipped with a structure-preserving map.
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Significance of Lawvere’s Theorem

• The theorem provides us with a “global” version of the Axiom of In-
finity. The local version simply asserts the existence of a certain set
in the universe, but the global version tells us that the universe comes
equipped with a structure-preserving map.

• Since we are searching for the “right” strengthening of the Axiom of
Infinity, the question we can now ask is, What properties “should” a
structure-preserving map of the universe have?

• Our Plan: Formulate stronger and equally natural versions of Lawvere’s
Theorem as candidates for Strong Axioms of Infinity.

• Why should stronger versions of Lawvere’s Theorem be true? They
will imply significantly enhanced combinatorial richness in the uni-
verse (because they will imply existence of stronger and stronger large
cardinals). Cantor’s Principle of Maximum Possibility: As much as
possible exists.
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What To Generalize?

• (Preservation properties) Strong preservation properties show up only
in the factors G, F of j, but not j itself. What if we endow j with the
preservation properties of G, F?
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First Generalization: The Blass-Trnková Functor

What happens if we require a functor j like Lawvere’s to preserve all limits
and colimits?
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First Generalization: The Blass-Trnková Functor

What happens if we require a functor j like Lawvere’s to preserve all limits
and colimits?

It is not hard to see that j ∼= id. Blass-Trnková showed that something
interesting happens if j is required only to preserve finite limits and co-
limits; such a functor is said to be exact.
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The Blass-Trnková Theorem (1976) Suppose V is the universe of sets
(a model of ZFC or even of ZFC − Infinity).

(1) Suppose j : V → V is a definable (with parameters) exact functor not
naturally isomorphic to the identity functor. Then

V |= “there exists a measurable cardinal”

(2) Suppose that in V , there is a measurable cardinal κ and D is a non-
principal κ-complete ultrafilter on κ. Then there is an exact functor
j : V → V , definable in V from D, that is not naturally isomorphic to
the identity.
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Idea Behind The Proof of the Blass-Trnková Theorem

• Suppose κ is measurable and D is a normal measure on κ. Define a
functor j = jD : V → V as follows: For any X, Y and any h : X → Y :

j(X) = Xκ/D = {[f ] | f : B → κ and B ∈ D}
(f ∼ g iff they agree on a set in D)

j(h)([g]) = [h ◦ g]

Blass-Trnková shows that this j is exact, and also that |j(κ)| > κ,
whence j 6∼= id.

• Assume j : V → V is an exact functor not naturally isomorphic to the
identity and let κ be least such that j(κ) 6∼= κ. One shows that κ is
measurable in V .
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Existence Of A Blass-Trnková Functor As A Strong Axiom of Infinity

Consider as our new (global) Axiom of Infinity the statement

“There is an exact functor j : V → V not naturally isomorphic to the
identity.”

Is this an improvement over the version given to us by ZFC alone:

“There is a functor j : V → V where j = G ◦ F , F a G and G is the
forgetful functor V � → V ”
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Remarks

• The preservation property is “cleaner” than in Lawvere’s since j itself
(rather than its factors) are endowed with the preservation properties

• The price we pay for a cleaner formulation is to require j to be exact
— but exactness is a natural geometric property

• Possible improvements.
• ZFC + “there exists a measurable” is not robust under set forcing

(e.g. Prikry forcing)
• We are seeking a maximal type of preservation, so we can ask, Can

“exactness” of the functor be replaced by something stronger?
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Maximizing Preservation Properties in Blass-Trnková

• If we try replacing “j is an exact functor” with “j is an elementary
embedding”, we are in danger of creating an inconsistency, by Kunen’s
Theorem, but it is possible to tread more carefully.
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embedding”, we are in danger of creating an inconsistency, by Kunen’s
Theorem, but it is possible to tread more carefully.

• (BTEE) Work in a language {∈, j} where j is a symbol for an elemen-
tary embedding. Use as axioms the usual ZFC axioms (for ∈-formulas),
an axiom schema Elementarity asserting that j is an elementary em-
bedding, and an axiom Critical Point asserting that a least ordinal is
moved by j. In previous work, these axioms were given the name the
Basic Theory of Elementary Embeddings, or BTEE.

• ZFC + BTEE = ZFC + Elementarity + Critical Point
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Maximizing Preservation Properties in Blass-Trnková

• If we try replacing “j is an exact functor” with “j is an elementary
embedding”, we are in danger of creating an inconsistency, by Kunen’s
Theorem, but it is possible to tread more carefully.

• (BTEE) Work in a language {∈, j} where j is a symbol for an elemen-
tary embedding. Use as axioms the usual ZFC axioms (for ∈-formulas),
an axiom schema Elementarity asserting that j is an elementary em-
bedding, and an axiom Critical Point asserting that a least ordinal is
moved by j. In previous work, these axioms were given the name the
Basic Theory of Elementary Embeddings, or BTEE.

• ZFC + BTEE = ZFC + Elementarity + Critical Point

• Fact: ZFC + BTEE has consistency strength somewhat less than
the existence of 0#.
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The Wholeness Axiom (WA)

The Wholeness Axiom

(1)φ (Elementarity Schema for ∈-formulas). Each of the following j-
sentences is an axiom, where φ(x1, x2, . . . , xm) is an ∈-formula,

∀x1, x2, . . . , xm

(
φ(x1, x2, . . . , xm) ⇐⇒ φ(j(x1), j(x2), . . . , j(xm))

)
;
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The Wholeness Axiom (WA)

The Wholeness Axiom

(1)φ (Elementarity Schema for ∈-formulas). Each of the following j-
sentences is an axiom, where φ(x1, x2, . . . , xm) is an ∈-formula,

∀x1, x2, . . . , xm

(
φ(x1, x2, . . . , xm) ⇐⇒ φ(j(x1), j(x2), . . . , j(xm))

)
;

(2) (Critical Point). “There is a least ordinal moved by j”.

(3)φ (Separation Schema for j-formulas). Each instance of the usual
Separation schema involving φ is an axiom (where φ is a j-formula).

WA = BTEE + Separationj
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Main Results Concerning WA

Fact: If there is an I3-embedding, there is a model of ZFC + WA.

WA Theorem (Corazza) Assume ZFC + WA, where j : V → V is the
embedding, with critical point κ.

(A) κ is super-n-huge for every n. Moreover, there is a proper class of
cardinals that are super-n-huge for every n.

(B) ZFC + WA is indestructible by set forcing.

(C) The only “natural” inner model of ZFC + WA, if there is one at all, is
V itself.

Note: If in the definition of WA, we replace Separationj with the following
simpler axiom:

for every set x, j � x is also a set

the resulting theory is called WA0. ZFC+WA0 has the same large cardinal
consequences as ZFC + WA, but it is not known to be indestructible by set
forcing.
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Summary of Results:
Consider as our final (global) Axiom of Infinity the statement

“There is a nontrivial elementary embedding j : V → V such that
Separation holds relative to all j-formulas”

or possibly,

“There is a nontrivial elementary embedding j : V → V such that for
all x, j � x is a set.”

Compare this with

“There is an exact functor j : V → V not naturally isomorphic to the
identity”
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Remarks. The new version of the Axiom of Infinity has these advantages:

• The new version maximizes preservation properties

• The new version proves the existence of virtually all large cardinals

• The resulting theory ZFC + WA is indestructible by set forcing

• ZFC + WA has the same “desirable” consequences that have already
been observed in the context of other large cardinals — e.g. Projective
Determinacy
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Final Thoughts

Is WA a “natural” axiom (schema) to add to ZFC?
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Final Thoughts

Is WA a “natural” axiom (schema) to add to ZFC?

We have arrived at WA by
• starting from a version of the Axiom of Infinity, something known to

be true and
• strengthening the axiom in a “natural” way, in the direction of maxi-

mizing combinatorial richness of the universe, short of inconsistency
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Appendix: Critical Point Dynamics

ω arises as the image of the critical point of j in one direction of the proof
of Lawvere’s Theorem. Based on acquaintance with critical point dynamics
at a measurable cardinal, we may track

• The type of infinity (large cardinal) that characterizes the functor j
by looking at its critical point (here, the critical point of j is the least
ordinal α such that |j(α)| > α, relativized to V if necessary)

• “Seed behavior”– to what extent do parameters in the vicinity of the
critical point give rise to all sets?
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Canonical Example of Critical Point Dynamics

• Canonical Example: j : V → V κ/U ∼= M , where M is the transitive
collapse of the ultrapower V κ/U and U is a nonprincipal κ-complete
ultrafilter over an infinite cardinal κ.

• The large cardinal strength is determined by the critical point κ of
the embedding (namely, the strength of the embedding j is that of a
measurable cardinal)

• Every set in M arises from dynamics in the vicinity of κ. In particular,
for every y ∈ M , there is a function f with domain κ such that y =
j(f)(κ); here, the domain of f and the definition of j itself, being
defined from an ultrafilter over κ, depend on sets in the vicinity of
(and definable from) κ. In Hamkins’ terminology, κ is a seed via j that
generates M . We can write:

M = {j(f)(κ) | dom f = κ}.
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Critical Point Dynamics of the Lawvere Functor

• We have seen that the “large cardinal strength” given by the critical
point of j is simply ω

• Significant “seed behavior” is found in G but not in j itself. It can be
shown that 0 ∈ G(F (1)) is a universal element for G. In particular

V = {G(f)(0) | f is a V �-arrow}
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Critical Point Dynamics of the Blass-Trnková Functor

Let j : V → V be a Blass-Trnkova functor.

• We’ve seen that the critical point of j is a measurable cardinal.

• Suppose now j is one of the “canonical” functors, defined as before
from a measurable κ and a normal measure D on κ. A “seed” for j is
given by the element [id] ∈ j(κ), where id : κ → κ is the identity. (It
can be shown that [id] ∈ j(κ) is a weakly universal element for j.) If

M = {j(f)([id]) | f : κ → V },

can show M 6= V .
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Critical Point Dynamics For A WA Embedding j : V → V

It can be shown that V 6= {j(f)(κ) | f ∈ V }. However, we have something
even better:

Theorem Let j : V → V be a WA-embedding with critical point κ. Then
there is a function f : κ → Vκ such that for every set x, there is an elemen-
tary embedding i : Vα → Vη satisfying
(a) κ is the critical point of i
(b) i(f)(κ) = x.

In other words, we may write

V = {i(f)(κ) | i is an extendible embedding}
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