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Abstract. We describe the set of all b for which the equation x = logb x has
a solution. A consequence of this computation is a new characterization of the
transcendental number e.

Introduction

Is there some real b such that the graph of y = logb x is tangent to y = x, as in the following
diagram?

Figure 1. y = x and y = logb x for some value of b.

In working with logarithms, we are more accustomed to graphs like the following, where the
log function lies strictly below y = x.

Figure 2. y = x and y = loge x.
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For a real-valued function f defined on the reals, we say x is a fixed point of f if f(x) = x. In
this paper, we study the set of all b for which logb has a fixed point; that is, we study the set B

where
B = {b > 0 : logb x = x for some x}.

Is B non-empty? Infinite? Do the elements of B admit a simple characterization? We will show the
answer is “yes” in every case. One surprising consequence of our results is a new characterization
of the number e, the base of natural logarithms.

I developed the material for this paper when, in preparing for a class, I found myself unable to
prove that x > logb x for every x and every b > 1. After working out the correct results, I discovered
that they could be organized into an interesting student project (the math pre-requisite is just a
firt course in calculus). To support this project format, I have included a number of exercises in
the paper.

The Fixed Points of Logarithms

To study the set B = {b > 0 : logb has a fixed point}, we begin by dispensing with some trivial
cases. First, notice that log1 is not defined anywhere; even log1 1 is ambiguous, since 10 = 1 = 11.
We will therefore omit b = 1 from the range of possible elements of B. (However, as a curiosity, if
we were to define log1 1 = 1, then x = 1 would be the only solution to logx x = x.)

Another easy case occurs when 0 < b < 1.

Figure 3. y = x and y = log 1
2

x.

Using properties of logarithms, one verifies that for any c > 1,

log 1
c

x = − logc x.

Therefore, when 0 < b < 1, logb is the reflection in the x-axis of logc, where c = 1/b. Therefore, by
a simple inspection of the graph (or by checking limits at 0 and ∞ and noticing that the derivative
of logb is always negative), one sees that logb is strictly decreasing, extending from +∞ as x → 0+

to −∞ as x → +∞. One can then use the Intermediate Value Theorem (applied to the function
x − logb x) to conclude that, for such b, logb must always have a unique fixed point; moreover, the
fixed point must lie in the interval (0, 1).
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Proposition 1. (0, 1) ⊆ B.

Therefore, the case of interest is b > 1. We let B∗ = {b ∈ B : b > 1}. The interesting answers
to the questions raised earlier pertain, as we shall see, to B∗ rather than B.

We study the function f(x) = fb(x) = x − logb x; a fixed point of logb is then a zero of f . We
begin with several straightforward computations:

lim
x→0+

f(x) = +∞

lim
x→+∞

f(x) = +∞

f ′(x) = 1 − (logb e)
1
x

f ′′(x) = (logb e)
1
x2

Exercise. Prove the second of these limits. Hint. Use the identity

x − logb x = (logb x)(
x

logb x
− 1)

and apply L’Hôpital’s Rule.

These observations about limits, together with the observation that f ′′(x) > 0 on (0, +∞),
show that the graph of f may be one of three types, always having a minimum at x = logb e:

Figure 4. A Type 1 variant of y = x − logb x, b > 1.
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Figure 5. A Type 2 variant of y = x−logb x, b > 1.

Figure 6. A Type 3 variant of y = x − logb x, b > 1.

Type I graphs arise when the usual bases for logarithms are used, such as 2, e, 10. For instance,
when b = e, the minimum is achieved at

x = logb e = loge e = 1.

Since fe(1) = 1 > 0, it follows that the natural log has no fixed points, as expected.

Exercise. Show that y = x − logb x yields a Type I graph whenever b = 2 or 10.

We now show that a Type II graph is indeed possible. A Type II graph must contain the point
(logb e, 0). But this happens if and only if each of the following is true:

f(logb e) = 0

logb e = − logb(logb e)

e = logb e

be = e
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But now, the equation be = e has a solution

b = e1/e.

Therefore, when b = e1/e and x = logb e, then logb x = x. It follows that e itself is also a fixed
point of logb.

In this case, the fixed point represents a point of tangency of y = x to logb x — we shall
therefore call such a fixed point a tangent fixed point. The fixed points we discovered for logb when
0 < b < 1 are not tangent fixed points.

Exercise. Verify that x = e is a tangent fixed point for y = x2 − (2e − 1)x + e2.

We summarize our findings so far with the following:

Proposition 2. When b = e1/e, logb has a fixed point. Indeed, e is a tangent fixed point of logb.

We have established that B∗ is nonempty. This result leads to the next question:

Question. Is B∗ infinite?

It is reasonable to hope that more candidates for elements of B∗ can be found using powers of
e in place of e. If we try

b = (e2)
1

e2 , x = e2

we again find that logb x = x. This observation generalizes to:

Proposition 3. For each natural number n ≥ 1, if

b = (en)
1

en ,

en is a fixed point of logb.

We wish to conclude from the Proposition that B∗ is infinite; however, one has to check whether
any of the numbers (en)

1
en are duplicates. This concern is addressed in the following exercise:

Exercise. Prove the following: The sequence

e1/e, (e2)(1/e2), (e3)(1/e3), . . .

is strictly decreasing and converges to 1.

The Exercise gives us the next Proposition:

Proposition 4. There are infinitely many b > 1 for which logb has a fixed point. That is, B∗ is

infinite.

So far, our only examples of b ∈ B∗ lie in the half-open interval (1, e1/e] (note that e1/e ≈ 1.4).

Question. Must every b ∈ B∗ lie in (1, e1/e]?
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Reasoning as we did to obtain a Type II graph, it is straightforward to show that, whenever
be > e, x − logb x yields a Type I graph; therefore the answer to the question is “yes”. However,
using a different approach, we can arrive at this answer in a way that reveals more of the structure
of B∗. We begin by asking another question: Suppose b, c ∈ B, b 6= c, and logb x = x. Is it possible
that logc x = x? If this were possible, we would have

x = logc x =
logb x

logb c
=

x

logb c
.

But this would imply logb c = 1, which contradicts the fact that b 6= c. Therefore, logc x 6= x.
We call this principle the Changing Base Property of logarithmic fixed points: Different fixed

points correspond to different bases.
Now we more closely examine the elements of B∗ that we have found so far. These all have

the form b = q1/q for some q. A reasonable conjecture is that all elements of B∗ are of this form.
To test the conjecture, we let b ∈ B∗; there must be an x such that

logb x = x.

Letting q = bx gives us immediately that logb q = x, and since logb is one-one, we conclude that
q = x. With this choice of q, we have therefore

(∗) bq = q.

We wish to conclude from (∗) that b = q1/q, but it might be possible that some b different from
q1/q also satisfies equation (∗). However, if such a b exists, we would have

logb q = q,

logq1/q q = q, and

b 6= q1/q

in violation of the Changing Base Property. Therefore, we must have b = q1/q, and we have shown
that every b ∈ B∗ has the desired form. A quick review of the proof shows that, for b ∈ B∗, the q

that works is > 1; also, the same proof goes through for any b ∈ B, but we may require only that
q > 0. Summarizing,

Proposition 5. For every b ∈ B, there is a q > 0 such that b = q1/q. Moreover, for every b ∈ B∗,

there is a q > 1 such that b = q1/q.

So how does Proposition 5 help us prove that every b ∈ B must be ≤ e1/e? Since every b ∈ B

has the form x1/x it is helpful to consider the graph of y = x1/x. Using calculus, we can identify
the graph’s main features:

Exercise. Verify the following properties of the function g(x) = x1/x:

(A) limx→0+ x1/x = 0
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(B) limx→+∞ x1/x = 1
(C) g achieves a maximum, with slope 0, at (e, e1/e)
(D) range(g) = (0, e1/e].

Figure 7. The graph of y = x
1
x , having max at (e, e

1
e ).

Therefore, since the range of g has maximum value e1/e and B ⊆ range(g), we have the
following, which answers our question:

Proposition 6. B ⊆ (0, e1/e].

Proposition 6 raises the natural question:

Question. Is it true that B∗ = (1, e1/e]?

The proof that the answer is “yes” is like our original proof that b = e1/e belongs to B: We
must show that any given b in (1, e1/e] lies in B∗. Since b ∈ range(g), there is q such that b = q1/q.
But now clearly

logb q = q,

as required.
This final observation provides us with a nice characerization of the logarithm bases that lead

to fixed points:

Theorem 7. Suppose b > 0 and b 6= 1. Then the following are equivalent:

(A) logb has a fixed point; that is, b ∈ B

(B) there is q > 0, q 6= 1 such that b = q1/q.

(C) 0 < b ≤ e
1
e .

There is one remaining piece of the puzzle that should be answered. Our work showed that
when b = e1/e, logb has a tangent fixed point. We also observed at the beginning that for all
b ∈ (0, 1), logb has a unique fixed point, but not a tangent fixed point. Because of the shape of
the graph of logb for b > 1, it is clear that logb can have at most two fixed points, and that loge1/e

must have exactly one. We are led to the following final question:
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Question. Which b ∈ B∗ are tangent fixed points? And for which b ∈ B∗ does logb have two fixed
points, and for which does it have just one?

The question is most easily answered by examining the graph of g(x) = x
1
x more closely.

Notice that if b ∈ range(g) and 1 < b < e1/e, we can read from the graph two fixed points by
obtaining the preimages of g at b. For each such b, there is a q ∈ (0, e) and an r ∈ (e,∞) such that
b = g(q) = q1/q and b = g(r) = r1/r; and certainly logb q = q, logb r = r. For such b, f ′

b < 0 on
(0, logb e) (which contains q), and f ′

b > 0 on (logb e, +∞) (which contains r). Therefore, neither q

nor r is a tangent fixed point.

Proposition 8. Suppose b ∈ B. Then,

(A) if 0 < b < 1, logb has a unique fixed point, which is not a tangent fixed point

(B) if 1 < b < e1/e, logb has exactly two fixed points, neither of which is a tangent fixed point

(C) if b = e1/e, logb has a unique fixed point at x = e, and it is a tangent fixed point.

Proposition 8 leads to a new characterization of the number e:

Proposition 9. The number e is the only real number that is a tangent fixed point for a logarithmic

function of the form y = logb x.
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