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ABSTRACT: We develop the machinery for performing forcing
over an arbitrary (possibly non-wellfounded) model of set theory.
For consistency results, this machinery is unnecessary since such
results can always be legitimately obtained by assuming that the
ground model is (countable) transitive. However, for establish-
ing properties of a given (possibly non-wellfounded) model, the
fully developed machinery of forcing as a means to produce new
related models can be useful. We develop forcing through iter-
ated forcing, paralleling the standard steps of presentation found
in [19] and [14].

In this paper, we develop the basic theory of forcing in the context of arbi-
trary (rather than transitive) models of ZFC. For the purpose of establishing
relative consistency results, it is always possible to use a (countable) tran-
sitive ground model, and the forcing machinery in this setting has already
been well developed (see for example [19]). There are occasions, however,
in which the objective is of a more model-theoretic nature; for instance, in
studying various types of extensions of a given, possibly non-wellfounded
model M of set theory, one may wish to consider forcing extensions of the
model as a source of examples. In the literature, the usual way of addressing
this need is to work with the Boolean-valued model M2, for some complete
Boolean algebra B, or to construct a Boolean ultrapower of M, again rel-
ative to some complete Boolean algebra B; these techniques are discussed
in [11]. In many such cases, it could be useful to have on hand the fully
developed machinery of forcing for arbitrary models. The purpose of this
paper is to fill this need.



A folklore insight about the matter is that roughly the same theorems
ought to hold true in the non-wellfounded case as for the transitive case (see
for example [20, p. 2]). But if one attempts to formulate the results for
the general case precisely, many questions arise. For example, one would
not expect the forcing extension Mg of a non-wellfounded model M to be
the “smallest” model including M and containing G (a result we call the
Minimality Theorem), though this assertion is true if M is transitive. One
might instead expect that the many forcing results of this kind, in the con-
text of possibly ill-founded models, would now be true “up to isomorphism,”
in an appropriate sense. But then, how would the standard fact, that, if P
is a nontrivial partial order in M, G ¢ M, be translated in the ill-founded
context, “up to isomorphism”?

To answer these and other natural questions once and for all, we develop
in this paper the machinery of forcing for arbitrary models of ZFC. Many
of the differences from the transitive case are only minor modifications of
the usual results. There are some more significant variations, however, that
stem from the fact that, in the ill-founded context, it is no longer possible
to define the forcing extension as a transitive collapse. This means that
elements of the forcing extension end up being equivalence classes of names,
and as a result, many convenient methods of proof become unavailable.
This fact most significantly affects the proofs of the Minimality Theorem,
just discussed, and the Two-Step Iteration Theorem (which asserts that
a two-step iteration is equivalent to a certain one-step forcing). Our new
statement and proof of the Minimality Theorem makes use of the fact that
even a non-wellfounded forcing extension “believes” itself to be obtained
by a collection of coherent transitive collapsing functions; this lets us use
the standard argument as a guideline, though more bookkeeping is required.
Verification that (M) g is canonically isomorphic to Mgg g in the Two-Step
Iteration Theorem turns out to be more difficult, again because collapsing
functions are not available here. In this case, a careful examination of names
is required to obtain the result.

The paper is organized as follows: In Section 1, we review basic facts
about partial orders, Boolean algebras, and models of set theory that have
a possibly non-wellfounded membership relation. In Section 2, we review
the necessary results on Boolean-valued models. In Section 3, we develop
the analogues to the usual theorems for one-step forcing and in Section 4,
for two-step iterations. Finally in Section 5, we make some remarks about
general iterations; as we will see, little work beyond that of Section 4 is
needed to establish the expected results for general iterations.

This paper is not the first to discuss the forcing machinery for arbitrary



models of set theory; in [21] forcing is introduced in the more general context
of semisets. However, the work in [21] was developed before the modern
approach to forcing had been standardized, and model theorists might find
this approach inconvenient and impractical. The present paper has the
advantage of paralleling the familiar approaches to forcing found in [15] and
[19] and may therefore be more suitable as a ready reference.

Another related area, which we do not pursue here, is the relationship
between the forcing methodology and nonstandard universes, in the sense
of nonstandard mathematics. Nonstandard mathematics is the attempt to
incorporate the objects and tools of nonstandard analysis into a ZFC-like
foundation for mathematics. The work in [9] and [16] survey the develop-
ments in this area of research. Typically, a nonstandard set theory postu-
lates three types of objects: standard sets, internal sets, and external sets.
Standard sets are meant to correspond to the usual sets of mathematical
concern. The class of internal sets represents a (nonstandard) expanded
universe consisting of the “ideal” elements of standard sets. The external
sets are “everything else”. Typically, the applications of nonstandard math-
ematics exploit the relationship between the standard and internal sets; a
desirable goal is to formalize the techniques for studying this relationship in
the surrounding universe. One of the most successful theories in this direc-
tion, developed in the work of Kanovei and Reeken in [17, 18] is Hrbacek Set
Theory (HST). HST is rich enough to formulate natural questions about the
class S of standard sets, the class I of internal sets, and their relationship. An
important example is (roughly stated) the question of whether elementar-
ily equivalent nonstandard extensions are always isomorphic (a more precise
statement of this is known as the Isomorphism Property or IP). The authors
of [17] show that IP is not decidable from HST, and they develop a version of
forcing over models of HST in order to prove half of this undecidability. The
forcing methodology developed for this purpose overlaps to some extent the
work we have done here, though in [17], the aim is to establish consistency
results rather than to give a full treatment of the topic of forcing in this
new context. However, as the referee pointed out to the author, the forcing
of [17] generalizes forcing in the nonstandard direction further than we do
here: The models we consider here, though possibly non-wellfounded, still
satisfy the Axiom of Regularity; they are internally standard. By contrast,
models of HST are not internally standard; forcing in this context could be
described as (in the words of the referee) “essentially nonstandard”.

The work in this paper was originally developed as a foundation for an-
other paper in which forcing machinery is developed for the language {€, j},
where j is a unary function symbol intended to represent an elementary



embedding of the universe; see [5]. At present, [5] and [4] are the main
applications so far of the material presented here.

1 Preliminaries: Non-wellfounded Models, Partial
Orders, and Boolean Algebras

Let M = (M, E) be a (possibly non-wellfounded) model of the language
{€}—in particular, we assume M is a model of ZFC. The symbol ‘€’
will be used both for the formal symbol of the language and for the “real”
membership relation in the surrounding universe V.

We often need to consider the syntax of the language {€} of set theory
as being formalized within set theory, and for this purpose, we follow [10].
In particular, we represent in ZFC e-formulas ¢ by constant terms ¢
(added to ZFC by definitional extension), having the property that each is
an element of V, (see [10, pp. 90-91]). We also use, without special mention,
simple formulas that describe properties of these sets. One such formula of
particular importance is Sat(u, M, b) which asserts that u encodes the &-
formula ¢(z1,...,zm) and (M, E(M)) E ¢(b(1),...,b(m)), where b is a
function defined on w that specifies set parameters. As in [10], Sat(u, M, b)
is a AZFC formula.

Our arguments often require several models with different membership
relations. To help avoid confusion about where arguments are taking place
at various stages of a proof, we adopt the convention of indicating that
(M, E) satisfies an atomic formula x € y at (a, b) by writing

(M,E) |=aEb

rather than (M, E) | a € b. (Formally, E' can be thought of as the binary
(M, E)-class defined by (M, FE) = E(a,b) iff (M, E) Facb.)
For any X € M, we let

Xp={zeM : MEzEX},

Xpp={Yp:YeMand M Y EX}.

The set X is the extension of X.

We shall assume at the outset that the standard natural numbers (in
V) form a (possibly proper) initial segment of the natural numbers of M.
Indeed, we will assume from now on that

V)V (Vo) and Vo € (V) Wy € (V)R (M =y Ex) = y € a].
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Using extensions, we can obtain external representatives of the ordered
pairs and functions living in M. First we define a pairing function op =
opp : M? — M:

op(z,y) = unique u € M such that M = u = (z,y). (1.1)

Forany X,Y,t € M for which M | “t: X — Y is a function”, we define
a function graph(¢) = graph ,,(¢) having domain Xp by

Vr,y € M (graph(t)(z) =y <= M Et(z) =y).

For any n € w and any R € M for which M = “R is an n-ary relation”,
we define an n-ary relation rel(R) = relp(R) as follows:

V(x1,...,2n) € M™ [(x1,...,2,) € rel(R) <—
M E (x1,...,2,) € R].

(1.2)
PROPOSITION 1 Suppose M = (M, E) is a model of ZFC.

(1) For all x,y € M, (z,y) = op(x,y) g2.

(2) If M = “R is a unary relation”, then rel(R) = Rp.

(3) Suppose M = t: X —Y is a function”.

(a) graph(t) is one-one if and only if M = ‘¢ is one-one”.
(b) graph(t) is onto if and only if M = “t is onto”.
(c) Suppose n, k € w and

ME X=(X,R,f) andY = (Y, S, g) are first-order structures of the same type,
R and S are n-ary, and t : X — Y is structure-preserving.

Then X' = (X g, rel(R), graph(f)) and Y’ = (Yg,rel(S), graph(g))
are first-order structures of the same type and graph(t) : X' — )’
18 structure-preserving.

Proof. The proofs of (2) and (3) are easy. For (1), let u =op(z,y). If z € M
and M = zEu, then M = [z = {z} V z = {z,y}]. Therefore, there are
v,w € M such that

(a) M = v ={z} Aw = {z,y}
(b) vp = {z} and wg = {z, y}



(¢) M E=u={v,w}, and

(d) ug = {v,w}.
We have
upe = {2zg:2€ M and M =z Eu}
= {vg,wg}
= {{z}, {7, y}}
= (z,y).

Typically, we will be interested in forcing with a partial order, and to do
so we will embed it into its Boolean algebra completion. All partial orders
(P,<p), denoted simply by P usually, will be assumed to have a largest
element, denoted 1p or simply 1. A Boolean algebra B can be specified by
providing an order relation < on B that makes B a complemented distribu-
tive lattice, or by providing operations V, A,* and constants 0, 1 satisfying
the usual axioms of a Boolean algebra (see [3, Section 4]). We also define
auxiliary operations —, <>, — by

b—c=0b"Ve

b—c=b—cANc—b

b—c=0bAc".

A complete Boolean algebra is a Boolean algebra B for which \/ X exists
for every X C B.

If P and @ are partial orders, a function ¢ : P — (@ is called a complete

embedding if the following hold (see [19, VII]):

(a) Yp1,p2 € P (p1 < p2 = i(p1) <i(p2))

(b) Vp1,p2 € P (p1 L p2 <= i(p1) L i(p2))

(c) Vge Q3p € P¥r € P(r < p = (i(r) and ¢ are compatible in Q)).
A map e: P — ( is called a dense embedding if the following hold:

(a) Yp1,p2 € P (p1 < p2 = e(p1) < e(p2))

(b) Vp1,p2 € P (p1 L p2 = i(p1) L i(p2))

(¢c) i P is dense in Q.



Suppose B, C are complete Boolean algebras and ¢ : B — C is a homo-
morphism. Then i is said to be completeif, for all X C B, i(\/ X) = \/(i"X).
In particular, if B is a subalgebra of C, then B is a complete subalgebra if
the inclusion map is a complete homomorphism. Typically, if i : B — C'is
a one-one complete homomorphism, we will identify B with its image under
i (which is a complete subalgebra of C).

The next theorem lists several standard results about partial orders and
Boolean algebras that we will need; proofs can be found in [15, Section 17],
[3], or [19, VII].

PROPOSITION 2

(1) Every partial order P has a unique (up to isomorphism) Boolean algebra
completion. That is, for each P, there exist a complete Boolean algebra
ro(P) (the regular open algebra of P), unique up to isomorphism, and
a dense embedding e : P — ro(P) \ {0}.

(2) If B and C are complete Boolean algebras and i : B — C' is a function,
then i is a complete injective homormorphism if and only if i | B\{0} :
B\ {0} — C\ {0} is complete in the sense of partial orders.

(3) Suppose P,Q are partial orders and B = ro(P) and C = ro(Q). If
i: P — Q is a complete embedding of partial orders and ep : P — B,
eq : Q@ — C are dense embeddings, then i lifts to a complete injective
homomorphism i : B — C.

(4) (Rasiowa-Sikorski) Suppose B is a Boolean algebra, a € B, a # 0,
and {Xo, X1,..., Xpn, ...} is a countable family of subsets of B such
that for each n, there is b € B such that b =\/ X,,. Then there is an
ultrafilter U C B such that a € U and for each n,

\/Xn € U implies X, NU # (. (1.3)

If e is a dense embedding that witnesses the fact that B = ro(P), we
will often write e : P — B for convenience, rather than e : P — B\ {0}.

Suppose M = (M, FE) is a model of ZFC and B € M is such that
M [ “Bis a Boolean algebra”. It is easy to verify that Bp, with the
ordering b < ¢ iff M = b < ¢, is a Boolean algebra (note the external <
is actually rel(<)). We say that B is M-complete if, for each X € M, if
M = X C B, then there is b € Bg such that b = A\ Xg (where the meet is
taken in Bg).



The next proposition says that the extension of a complete Boolean
algebra in M is always an M-complete Boolean algebra under the natural
ordering.

PROPOSITION 3 Suppose M = (M, E) is a model of ZFC and in M B is a
complete Boolean algebra. Then (Bg, <) is an M-complete Boolean algebra.

Proof. Suppose X € M and M = X C B. Let b € Bg be unique such that
M E b= A\X. Clearly, for each x € Xp, M E=b <z, and so b < x; thus b
is a lower bound of X. Suppose ¢ € B and, for each z € Xg, ¢ < z. Then
M EVz € X (¢ <x), whence M |= ¢ < b. Hence ¢ < b, and we have shown
that b = /\X |

Likewise, one can show that each of the Xg as in Proposition 3 has a
join in Bg. For each X C B let X* = {z* : € X}. It is easy to show
that if Y C Bg has a join and a meet, so does Y.

The obvious similarity between the structures (Bg, <) and (B, <)M de-
rives from the fact that these structures actually have the same first-order
properties. This in turn follows from a more general observation that will
be useful: Suppose n, k € w and

ME “X=(X,R,f) is a first-order structure,
R is an n-ary relation, and f is a k-ary function”.

Let X' = (Xg,rel(R), graph(f)). Let ¢(x1,...,xm) be a first-order formula
in the language of X'. Then for all b € M for which

M E “b:rank(T¢1) — X is a function”,
we have
X' = ¢lbo, - .., b—1] = M [ Sat(1¢1, X,b), (1.4)

where, for each i, M |= b; = b(i). The proofis by a straightforward induction
on the complexity of ¢ and makes use of the fact that M end-extends the
real V,,. (This convenient observation was pointed out to me by D. Hatch.)

Some easily proven consequences (1.4) are listed in the next proposition:

PROPOSITION 4

(1) Suppose M |= “P is a partial order”. Then M = “P is separative” if
and only if Pg is separative.



(2) Suppose M = “P is a partial order”. Then for all D € M, M
“D is a dense subset of P” if and only if D is a dense subset of Pg.
The same holds if “dense subset of” is replaced by “(maximal) an-
tichain in”.

(3) Suppose M = “B is a Boolean algebra and b,c EB”. Then M |=b =
c* if and only if, in Bg, b = c¢*. Analogous statements hold for the
operations N,V and for the constants 0, 1.

(4) Suppose M = “B is a Boolean algebra and X,Y are subsets of B”.
Then M =Y = X* if and only if Yg = X},.

(5) Suppose that in M, P is a partial order, B = ro(P), and e : P — B
is a function. Then M = “e is a dense embedding” if and only if
graph(e) : P — Bpg is a dense embedding.

Proof. We outline the proof of (5): Consider in M the first-order structure
(B, A\, V,*,0,1, P, B, e), where e is treated as a binary relation. Clearly, the
property of being a dense embedding is first-order relative to this structure,
and so (1.4) applies. =

2 Boolean-valued Models

Given a model M = (M, E) of ZFC and a B € M such that M [
“B is a complete Boolean algebra”, we build the Boolean valued model M
in M in the usual way: M?Z = J, .oy ME, where ME =0, MEB_, is the
set of all functions f € M such that dom f € MPZ and ran f C B; and
Mf = Ug<nr M2E_ when A is a limit. In M, we also define sets Mp,, v an
ordinal in M, as follows:

ME Mg, =MPnV,. (2.1)
As usual, define a first-order language £F = £MB consisting of € to-
gether with a constant for each member of (M?Z)g. Formulas of £B are
coded in M so that the formulas form a definable class in M. We refer to
the formulas of £F as B-formulas. As usual, there is a Boolean truth value
map [-] = []4!, depending on B and M and defined within M by recursion
on a well-founded relation, that assigns a value in B to each B-formula. For
completeness, we give this definition here.



[c€7rls =Vigdom (7)Ao =1]B)

[[0 - T]]B - /\sEdom (o) o(s) — [[5 € T]]B) A /\tEdom (T)(T(t) - [[t € OHB)
[WAole =[¥lsA[dls

[—]s = ([¢¥1B)"

[Bz ¢ ()]s =V, puslv(®)]s.

In the definition, o and 7 are B-names and 1, ¢ are B-sentences. Formally,
[#] B is defined for atomic 3 within M by recursion on pairs of name-
ranks (see [15]). Then the definition proceeds, by induction in V, on the
complexity of formulas. The definition up to any finite stage is formalizable
in M, but, by Tarski’s result on undefinability of truth, there is no class
function F defined in M such that F(ry1) = [W]]%/l for every B-sentence 1.
For b € Bp, we express the fact that a formula ¢(z) at 7 has Boolean
value b in M with the notation M = [¢(7)]p = b or [¢(7)]5! = b; when
the underlying Boolean algebra is clear from the context, we shall suppress
the subscript “B” in this notation. In M, we say M? = ¢ if [¢]p = 1.
Still in M, for each z € M, we let & = {(,1) : y € } € MP; & is called
the canonical name for z. Let u = ug € (M?), be defined by letting
domu = {b: b € B} and defining u(b) = b for all b € B. u is called
the canonical name for a generic ultrafilter in B. (We will define generic
ultrafilter for the present context in the next subsection where we deal with
two-valued models.) The usual forcing relation I is defined in M by

biF ¢iff b < [¢].

Next we state two theorems that outline useful properties of M5, The first
of these is a result about B-names; proofs of parts (1)—(4), (6) can be found
in [2]. We will sketch a proof of part (5) using Theorem 10 in the next
subsection.

THEOREM 5 Suppose M = (M, E) &= ZFC and, in M, B is a complete
Boolean algebra.

(1) (Names of Unions) In M: Suppose 0 E MP. Define 1 E MP by
dom 7 = U{dom v:vEdom o}

and
7(t) =[x € o (t € 2)].

Then [t =Uo]p =1.
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(2) (Names of Subsets) In M: Suppose o E MB. Then for every 7y E MP
there is 9 E MP such that dom 7 = dom o and [mCo—m =
7’2]]3 =1.

(3) (Names Of Power Sets) In M: Suppose o0 E MP. Let pg(c) be the B-
name defined as follows: dom pg(o) = 9™ () B and for allt E dom pp(o),
pp(0)(t) = [t € o]. Then [pgp(o) = P(o)]p = 1.

(4) (Mixing Lemma) In M: Suppose A C B is an antichain, and we have
B-names {0, : a EAY. Then there is 0 E MB such that for all a E A,
a < [o=o04]B.

(5) (Unmixing Lemma) In M: Suppose o,m EMP. Then there is an
antichain A of elements of B below [o € | g such that\|] A = [o € 7]p
and for each a E A there is 0, E dom 7 such that a < [o = 0,]B.

(6) In M, MPB is full; that is, for each B-formula ¢(x, 1, ..., x,) and all
Tty Tn € (MPB) g, there is 7 € (MP) g such that

ME[o(r, 11, . ..om)] = [Bro(z, 1y, m)]-

The name pz(0) in part (3) will be called the canonical B-name for the
power set of o. Part (5) asserts that every Boolean-valued element o of a
B-name 7 is a mixture, in the sense of (4), of the elements of the domain of
7 by a maximal antichain below [o € 7] p.

In working with names, it is handy to have a canonical subcollection of
names that are relatively small in size and low in rank. For this purpose, we
define canonical names for ranks V,,, give bounds on the sizes and ranks of
these names, and use these tools to describe a relationship, definable in M,
between the rank of a set in a forcing extension and the rank of one of its
well-chosen names. The bounds we describe below are convenient for this
paper but are not optimal; see [20] and [13] for sharper results in the case
of partial-order-based names.

We begin by recursively defining in M a class sequence (, : @ € ON)
of names for the ranks V,,: Let o = 0. For the inductive step, given r,

dom roy1 = Bdom (fa),
I.'04—1—1(75) = [[t - i'a]]B'

For \ a limit:
dom ry = |J{dom r,:a < A};

fk(t) = \/a<>\[[t6fa]]B-

11



Recall that for an infinite cardinal x, 3, (k) is defined recursively as follows:
(k) = k; Dag1(r) = 2720 D\(k) = Uyey Jalk) for limit A, Also,
for any ordinals «, 3, we define reg(f3, a) to be the least regular cardinal
> max{a, }.

THEOREM 6 Suppose M = (M, E) is a model of ZFC and, in M, B is a
complete Boolean algebra.

(1) M [=Va € ON [t, = Va]s = 1.
(2) M |=Va € ON |fo] < Ju(|B]).

(3) In M: Whenever o is a B-name with domain dom T, then o € V,
where p = reg(rank(B), a).

(4) M E=Va < AEON (X a strong limit and BEV)) = t, EV)].

(5) In M: If X is a strong limit, BEVy, and o EMP, then there is
TE Mp ) such that [o € V\ — o =7]p = 1.

(6) There is an M-class function T = T with M =T : ON — ON having
the following property in M:

Va EONYo EMP (o eV ]p=1 =

2.2
IrEMp @y [0 =7l =1). (2.2)

In particular, if T is defined in M by M |= T(a) = reg(rankB, a),
then T satisfies (2.2).

Proof. The proof of (1) is by induction in M on the ordinals and uses
Theorem 5(3) at successor stages. For the limit stage, working in M, notice
that if A is a limit, we can let o be the name having domain {r, : @ < A}
and constant value 1. Then for all ¢t E o,

tA(t) = Vaalt €tals
=[3zxe€ot e z]p.

It follows from Theorem 5(1) and the induction hypothesis that
[ix=J{tara <A} = J{Vara< A} =Wi]s=1

The proofs of (2) and (4) are also straightforward inductions (in M). To
prove (3), we proceed by induction, in M, on the ordinals. The basis step is
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trivial. For the successor step, suppose dom ¢ = dom rn41. Then dom o =
Bdom (Fa) " Let p = reg(rank(B),a). Clearly p = reg(rank(B), o + 1). By
induction hypothesis, we have easily that {B,dom 1y, 1.} € V,. It follows
easily that o € V), as required. For the limit step, suppose A is a limit
ordinal and dom ¢ = dom r) = (J{dom 1, : @ < A}. For each a < A,
let 3, = rank(t,). By the induction hypothesis, 3, < reg(rankB, a). Let
B = sup{B : @ < A}. Then |J,.ydom r, C V. Let p = reg(rankB, \).
Since A < p and each (B, < p, by regularity of p we have § < p. Thus
dom ry € V,. Since B € V,, it follows that o € V.

To prove (5), suppose M = X is a strong limit, B EVy, and o E MPB.
Arguing in M, since sat(B) < A, there is @ < A such that [o € Vy]p < [o C
Va] B Now by Theorem 5(2), we obtain a B-name 7 such that

dom 7 =dom r, and [o CV,]p <[o="T]5.

The result follows.

For (6), we define T' by M | T'(a) = reg(rankB, ). Suppose « and o
are such that [o € V,]%' = 1. Using Theorem 5(2), we obtain in M a 7
having domain dom ¥, such that [o = 7]%' = 1. By (3), M =T EVri) =

The next theorem is a list of results about Boolean-valued set theory
that we will need in our exposition; again, proofs can be found in [Be].

THEOREM 7 Suppose M = (M, E) &= ZFC and, in M, B is a complete
Boolean algebra.

(1) For each axiom v of ZFC, [¢]}' = 1.

(2) For each T € (MPB),

[reu' =V ecrlr=a)z' =V A lr=di).

¢EB c€BE

For each b € B, )
M’:[[bEU]]B:b.

(3) For each x € M and T € (MB),

Fea=(Vi=as) =V =

yEax YETE
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(4) For each z,y € M
)M
M

rEy <= (MPE
r=y = MPEi=y)

¢
Mm
X

(5) For any X¢ formula ¢(x1,...,2,) and any y1,...,yn € M
ME 6(y1,..yn) <= (MPE 6y, ..,5) ™"

(6) For all 7 € (MP),

[ is an ordinal]y' = ( \/ [r= d]])M = \/ [ = a]st.
aEON aEONY

(7) Suppose that in M, C is a complete Boolean algebra and B is a com-
plete subalgebra of C. Then for any X formula ¢(x1, ..., z,) and any
Tlyeoo,Tn € (MB)E,

[o(T1, .. .,Tn)]]%/l = [p(1, .. .,Tn)]]é«/l.

We remark here that the basic results concerning A-cc forcing and A-
closed forcing hold in the present context of non-wellfounded ground mod-
els because they hold in the Boolean-valued model — namely, A-cc forcing
preserves cardinals and cofinalities > A and A-closed forcing adds no new
functions on sets of size < A. After stating relevant definitions, we record
these results below in the language of Boolean-valued models; see [2] and
[15] for proofs.

Still working in a model (M, E) of ZFC, suppose A is an infinite cardinal.
Recall that a partially ordered set P is < A-Baire if the intersection of
less than A\ open dense subsets of P is dense. If P is < A-Baire, so is
ro(P) \ {0}. Moreover, we say that a complete Boolean algebra B is < A-
Baire iff B\ {0} is < A-Baire in the sense of partial orders. If z,y € M and
M = “Bis < A-Baire and |z| < A and F = y*”, then [§* = F]3' = 1.

Still in M recall that if P has the A-cc then B = ro(P) does too,
and in either case, whenever # > X is a cardinal of cofinality 7, then
[0 is a cardinal and cf(d) = ] p = 1. We record these facts:

PROPOSITION 8 Suppose M = (M, E) is a model of ZFC and, in M, P is
a partial order and B = ro(P), and X is an infinite cardinal.
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(1) If, in M, P is \-closed (or even < A\-Baire), then for all z,y, F € M
with
Mzl <X and F = y~,

we have )
5 = FI = 1.

(2) Suppose in M P is A-cc, § > X is a cardinal, and cf(0) = ~. Then

[0 is a cardinal and cf() = 3] = 1.

We shall write sat(P) (or sat(B)) for the least x such that P (or B) has the
K~CC.

We conclude this subsection with some facts about the canonical name
for generic filters in the context of Boolean-valued models. (Again, we post-
pone the actual definition of a generic filter to the next subsection.) In M,
suppose P is a partial order, B = ro(P), and e : P — B is a dense embed-
ding. We define g =gp, € (M?P), as follows: Let dom g = {p: p € P} and
define g(p) = e(p). The name g is called the canonical name for a generic
filter in P with respect to e. The following theorem is an easy corollary to
Theorem 7:

THEOREM 9 Suppose M = (M, E) = ZFC and, in M, P is a partial order,
B =ro(P), and e : P — B is a dense embedding.

(1) For each 7 € MPB,

[reel™ =1\ () A [r=5]8)]" = \/ (@™ A [r =I5

pEP pEPE

(2) For each p € P,
[ € gl 5" = (e(e)™.

(3) For each p € P,
[p € g e(p) €' = 1.
3 Forcing Over Arbitrary Models

The properties given in the Theorem 7 are internal to M; consistency results
in the context of Boolean-valued models take the form

MES=MEESto,
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where S is an extension of ZFC. Here, however, we are interested in casting
our results in terms of two-valued models. To obtain such a model from M5B,
we collapse M P with an ultrafilter U that is “contained in” B. When M is
transitive, we can use an ultrafilter U C B, but when M is arbitrary, we need
to take U C Bg. Even in the transitive case, MZ /U is a poor substitute
for the usual generic extension M[G], unless U is endowed with genericity.
In the transitive case, we can define U to be generic if A X € U whenever
X € M and X C U, but this definition has to be modified for arbitrary M.
In the transitive case, using a generic U gives us that M B /U is well-founded
with transitive collapse precisely equal to M[U]. For arbitrary M, using
a generic U gives us a new model My that closely resembles its transitive
analogue; Lemma 14 and Theorems 15 and 16 list the relevant properties.
Before proving these results, we establish a few additional preliminaries:

DEFINITION 1 Suppose M = (M, E) is a model of ZFC and, in M, B is a
complete Boolean algebra.

(1) (S-Genericity) Suppose M = S C P(B). We will call an ultrafilter
U C Bg S-generic over M if, whenever X € M, X € Sg,and Xg C U,
we have \ Xp € U.

(2) (Genericity) An ultrafilter U C B is B-generic over M if U is (P(B))'-
generic over M.

(3) (Internal Genericity) Suppose I', S € M and
M = “I' C B is an ultrafilter and S C P(B)”.
Then I' is internally S-generic (for B) in M if

MEVXeS(X Tl = A\XET). (3.1)

(4) (Genericity in a Model) Suppose I',;S € M. Then we say M =
“I" is S-generic in B” if M |= “I" C B is an ultrafilter and S C P(B)”
and (3.1) holds.

Parts (3) and (4) are different ways of saying the same thing; indeed,
I is internally S-generic in M if and only if M | “T' is S-generic in B”.
Parts (3) and (4) are different from part (1) because we may be dealing with
non-wellfounded models. An example of internal genericity is uy: In M let
P = P(B). Then uy is internally P-generic in My. The next theorem
is the analogue of the usual result that generics over countable transitive
models always exist:
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THEOREM 10 Suppose M = (M, E) is a countable model of ZFC and M =
“B is a complete Boolean algebra”. Then, for each nonzero b € Bg, there
18 an ultrafilter Uy, C Bg such that b € Uy and Uy is B-generic over M.

Proof. Let Pyy = {X € M : M = X C B} and let b € Bg. Since
M is countable, so is P = {Xgp : X € Py} and we can write P =
{Xg]),XS), .. .,Xgl), ...}. Since B is M-complete, each ng) has a join
and a meet in Bg. By the Rasiowa-Sikorski Theorem applied to Br and the
family P, we obtain an ultrafilter U, C Bp such that b € Uy and (1.3) holds.
Assume that for some n, ng) C Uy but /\ng) ¢ Uy. Then \/(Xgl))* € U
By (1.3), some z* € (ng))* must be in Up. But this is impossible since z is
also in Up. The result follows. =

As promised in the last subsection, we can use Theorem 10 to prove
Theorem 5(5): Work in M: Let b = [o € w]p and let B, = {c € B : ¢ < b}.
Let K = {(7,¢) Edom w X By, : ¢ < [t = 0] }. Let Ky be a subset of K that
is maximal with respect to the property that for all (7, c1), (72, c2) E Ky,
ciNecg =0. Let A= {cEBy: 3r Edom 7(c,7) EKp}. Clearly, A is an
antichain below b. We prove that \/ A = b; it suffices to show that A is a
maximal antichain below b. Suppose d E By is such that d A ¢ = 0 for all
cEA. Let U be B-generic over M with ¢ € U. Since, in M, ¢ < Jo €
7] B, there must be, by the definition of Boolean-valued membership and
genericity, a 7/ € M with M |= 7 Edom 7 and [¢ = 7JM EU. Thus, in
M, we can find d’ below both d and [o = 7/]™. Now (7', d’) E K satisfies the
property that for any (7,¢) E Ky, d' A ¢ = 0, contradicting the maximality
property of Ky. Therefore, as claimed, \/ A = b. To complete the proof,
arguing in M, for each a E' A, we let o, be such that (o4, a) E Ky; these o,
have the required property.

A familiar equivalent form of genericity is given in the next proposition.
The proof is an easy variant of the usual one in the context of transitive
models (see, for instance, [15, 17.4]).

PROPOSITION 11 Suppose M = (M, E) is a model of ZFC, B 1is, in M,
a complete Boolean algebra, and U C Bpg is an ultrafilter. Then U is B-
generic over M if and only if, for each D € M, DN U # 0 whenever
M E “D is dense in B\ {0}”. =
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We proceed to a description of the model My = (MP) /U, where U is
some B-generic ultrafilter’ over M. Given such a U, define an equivalence
relation ~y on (M%), by

T ~py To iff [[7'1 = Tg]]'g/l eU.

We denote by 177 = 7'(/}4 the ~p-equivalence class containing 7. We let
My = {my : 7 € (MP)}. Define a membership relation Ey; on My by

oy Eyy iff Jo € 7']]%4 eU.
As usual, Fy respects equivalence classes. We have the following;:

THEOREM 12 Suppose ¢(z1,...,2,) is a formula and 7,...,7, € MPB.
Then

My ¢(m)us- - - (T)v) iff [o(r1, - )5 € U
In particular, My | ZFC.

Proof. The last part follows from the first. The proof of the first part is by
induction on the complexity of ¢. The only nontrivial case is the existen-
tial quantifier case where fullness of M is used. Suppose ¢(z1,...,z,) =
3z p(z, 21, ..., x,). Then for any 7,...,7, € MB,

MU ’: ¢((7—1)U7 ey (Tn)U) & dr € MB MU ’: ¢(TU, (Tl)U, e (Tn)U)
<~ Irc MB[y(r,m,..., )M eEU
= [Fx(z,m,..., )M eU
<~ [[(15(7'1, .. .,Tn)]]M €Un

The analogues to the usual Forcing Theorems now follow as a corollary:

THEOREM 13 (FORCING THEOREMS) Let be a sentence of the B-language
for M.

(1) Suppose b € Bg. Then M = b Ik 9 if and only if, for every U that
contains b and is B-generic over M, we have My = 1.

(2) My E ¢ if and only if there is b € U such that M = bl 1.

Though we do not pursue this direction here, interesting things can be said about My
for an arbitrary (not necessarily generic) ultrafilter. See for example [11].
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Proof. For (2), both directions follow immediately from Theorem 12. For
(1), if M E=bl-1 and b € U, where U is B-generic over M, then My =
by Theorem 12. For the converse, if M [~ b |- 1, there is ¢ € Bg, ¢ < b such
that ¢ # 0 and cA 9] = 0. Then M = ¢ < [-¢] . Let U be B-generic over
M such that ¢ € U. But now b € U and, by Theorem 12 again, My | -,
and this suffices to complete the proof. »

Next, we describe properties of the natural embedding of M into My.
Since we are working with possibly non-wellfounded models, it will be helpful
to review the usual mappings that are used when M is transitive, and then
indicate the difference in the present context. When forcing over a countable
transitive ground model M with a generic ultrafilter U in B, one has:

M — MBI MBS MU,
and m o 7, is often denoted 7y;. In the present context, the map m, which
is the Mostowski collapsing function, is not generally an isomorphism since
Ey is typically non-wellfounded, but all the other maps are defined and
used in the usual way. (Technically, the definition of 7y must be changed
tony : (MP)g — (MB) /U, and the check function is to be thought of as
defined within M.) Without the transitive collapsing function, it will not
generally be true that M is a subset of the forcing extension. We therefore
define the insertion map that gives the canonical isomorphism: sy =71, 0 7 ;
in other words, for all x € M,
su(z) = Zu.

The next theorem lists the properties of s;y. We need some definitions.
We follow [2] in defining an element y € My to be a standard ordinal
of My if My & “yis an ordinal” and for some a € M for which M =
“ar is an ordinal” we have My | y = ay. Also, given models (A, E') and
(B,F) of {€} with A C B, we shall say that A is transitive in B if for
allz € A, y € B, if y Fx, then we have y € A and y Fxz. Given models
C=(C,FE)and D = (D, F) of {€} and a function f : C — D, we will say
that f is a transitive embedding, and that C is transitively embedded in D
by f,if f:C — (f'C,F) is an (E, F)-isomorphism and f”C' is transitive in
D. (A warning is in order here. Typically, in this paper, when we speak of a
model A being a transitive subset of another model B, the intended meaning
will be as in the above definition, and not in the more familiar sense that A
is in fact a transitive set that is a subset of B.)
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LEMMA 14 Suppose M = (M, E) is a model of ZFC. Suppose that, in M,
B is a complete Boolean algebra, and that U is an ultrafilter in Bg, which
1s B-generic over M.

(1) The map sy : M — My is a transitive embedding; that is,

a) sy : M — s/, M is an (E, Ey)-isomorphism
U
(b) sy M C My is transitive in My.
(2) M and My have the “same” ordinals. That is, for every a € M, if «

s an ordinal in M, then &y is a standard ordinal of My, and every
ordinal of My is standard.

(3) Suppose M = “C is a complete Boolean algebra” and W is C-generic
over M. Then the map ¢ : sy M — s{, M defined by {(Zy) = Tw is
an isomorphism satisfying sy = £ o sy.

M
i/\svf
{ "

sy M

!
spyM

Proof of (1). If x # y are elements of M, then by Theorem 7(4), [# # y]™ =
1 € U. By Theorem 12, My | Zy # yy. Thus, sy is one-one. Replacing =
with appropriate forms of the membership relation in the above argument
leads to the conclusion that sg; is in fact an isomorphism.

To see that M’ = s”M is transitive in My, suppose wy € M’ and
My E 2y Ey wy; we show that 2z € M’ by showing that, for some y € M,
[z = y]M € U. Now My [ zy Eywy implies [z € w]™ € U. By Theorem
7(3),

eal = \/ [ =M.

YEWE

By genericity of U, there is y € wg such that [z = §]™ € U, as required.
This completes the proof of (1). =

Proof of (2). To see that each ordinal in M is mapped to a standard ordinal,
suppose M = “a is an ordinal”. By Theorem 7(5), [“@ is an ordinal”’]M =
1 € U. By Theorem 12, My | “dy is an ordinal”. Therefore « is mapped
to a standard ordinal. Conversely, to see that every ordinal of M is stan-
dard, we show that each ordinal 7y in My is equivalent to a standard ordinal
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arpr:

My E “rp is an ordinal” <= [“r is an ordinal”]M € U

= \/QGON%I [r = a]M (by Theorem 7(6))
< Ja cONY [r=a]M cU (by genericity)
= Ja € ON¥ 7, = ay (by Theorem 12)

as required. m
Proof of (3). Immediate. =

Notice that by transitivity, as in (1), for any z € M, the members of
sy(z) are of the form sy (y) for y € M. Intuitively, this says that sy(z) =
s/l/] (), but this notation is incorrect. The intuition can be made precise with
the formula:

[sv(2)] B, = sy (wp). (3.2)

By (2), the ordinals of My must be standard. Therefore, we will use
the same notation — Greek letters «, 3, etc. — to denote the ordinals in
both M and My. This identification makes sy the identity on ONM: that
is, for all @ € ONg,

sy(a) = a.

Let w" denote the set of standard integers and (V,,)V the set of standard
hereditarily finite sets. Our convention of identifying the standard elements
of w™ with the elements of w", and the standard elements of (V)™ with
the elements of (V,)V leads to the following further identification:

Ve € (V)M sy(x) = =

We also wish to identify B with its image under sy. It is easy to see
that sy induces the isomorphism

<BE7 §> = <[8U(B)]EU7relMU(sU(S)»;

in other words, B and its image are isomorphic under sy. We therefore
make the identification:

for all b € Bg, s(b) =b.
This identification implies that

syU = U.
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It is important for later work not to identify M with s/l/]M , though in
some circumstances the identification is warranted. The problem is that
there will be times when we need to know whether one forcing extension is
truly a subset of another; to make use of this identification in such circum-
stances would be incorrect. However, for arguments that are strictly “up to
isomorphism” (and so do not, for example, make claims about one model
being a subset of another), the identification is justified and will be used
sometimes for the sake of readability.

THEOREM 15 Suppose M = (M, E) is a model of ZFC. Suppose M =
“B is a complete Boolean algebra” and U is an ultrafilter in Bg that is B-
generic over M. Then the model My = (My, Ey) has the following prop-
erties:

(1) If M is countable, then My is also countable.

(2) (ap)g, = U (where uy is the U-equivalence class containing u and
(uy)g, is its extension).

(3) Suppose N = (N, F) is another model of ZFC and M s transitive
subset of N that is definable with parameters in N'. Suppose that for
some I' € N, I'r = U. Then there is a one-one map f : My — N
satisfying, for all z,y € My,

rEyy < f(x) F f(y).

Proof of (1). Assume M is countable. Note that (M%) is a subset of M,
so (MB) is countable. The map ny : (MP), — My : 7+ 71y is onto;
therefore My is also countable. =

Proof of (2). We first observe that, by genericity and Theorem 7(2), for all
TeMB,

[reuMeU <= BbeBpbA[r=0M)ecU
—= BecU[r=MecU.

Thus (making use of the identification sy | Bg : b+ b),

(uU)EU :{TU EMU:MU ’:TUEUUU}
:{TUGMU:[[TEU]]MG{J}
={meMy:3beU[r=0MecU}
:{bU:bEU}

— g
U
=U.
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Proof of (3). The Boolean-valued model M® is definable in A; we claim
that
N E “T' is B-generic over M” :

Suppose D € M and M = “D is dense in B\ {0}”. By transitivity of M
in N, Dg = Dp. Thus, there is d € M such that d € DpNU = Dp NI'p.
It follows that N/ = d F D NT, as required. Thus, we can define in N the
class Mr = {or : 0 F MP}. (To do this properly, we must use Scott’s trick
in the definition of the equivalence classes since, without this restriction,
each equivalence class 71 would be a proper class in M.) Now if we define
f: My — N by f(rvr) = (), f is easily seen to have the required
properties. m

The result described in (3) above is not optimal since we have required
that M be a class in A. The reason that the usual proof—which does not
rely on this assumption—fails here is that it relies on the existence of the
usual collapsing map from M?® to the forcing extension, defined recursively
by iy(t) = {ivy(o) : 7(c) € U}; when such a map exists (and the models
involved are transitive), one can argue that the range of the restriction of this
map to each M2 is included in N, whence the entire forcing extension lies in
N. In the present context, although we do not have such a collapsing map,
once My has been built, My believes that it is the range of such a collapsing
map, or at least of a coherent collection of set maps that collapse names
in the same way. This is true because if one builds the forcing extension
entirely within MP? using the canonical name for a generic ultrafilter, a
collapsing map is definable. In the next paragraph, we develop these ideas,
and use them to improve Theorem 15(3). We shall call a collection F of
functions coherent if its elements are pairwise compatible (relative to the
usual inclusion relation).

We begin with some facts that are provable in MZ. Recall that we may
add a constant symbol V to our forcing language £F that represents the
ground model in the sense that, in M

[reVls= \/ [r=4i]s.

zEV

One shows (see [2]) that, in M, the following statements have B-value 1:

¢“V is a transitive model of ZFC containing all the ordinals”;

¢(“B is a complete Boolean algebra”)v;

e “u is B-generic over V7.
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Defining B-names and the collapsing map within M7, one also proves that
[V[u] is a transitive model of (ZFC1, V C V[u], and u € V[u][p = 1.
Finally, one can show in M that
[Vz (z € V[u))]p = 1. (3.3)

Formula (3.3) says that, when the forcing machinery is developed inside
M?E, every element of the real forcing extension is realized by a B-valued
term defined in M5,

We can restate Theorem 6(5) in M? as follows:

[Va,X,03z[( (a astrong 1imit)‘7 ANABeVy Ao eVyA
zGMB@) — o =2z|]p=1.

In other words, if « is a strong limit in the ground model and o is forced to
be an element of V,, there is a name 7 in the V,, of the ground model that
is forced to equal o. It follows that

[Va ((a a strong limit)V — V, = Vo[u)]3! = 1. (3.4)
Putting together (3.3) and (3.4), we obtain
[Vz 3 (z € Vy[u)) ¥ = 1. (3.5)
The consequence of (3.5) and (3.4) after collapsing by U is that we have
My [EVz 3o (2 € sp(V) ), (3.6)
and
M E “ais a strong limit” = My = Vi, = sy(VM)[uy]. (3.7)

Now we can define our coherent collection of collapsing maps inside M;:
For each v, recursively define i v, = iy on sy(Mp) by

iy(su(T)) = {iy(su(0)) : sy(o) Eydom sy (1) A sy(T)(su(o)) € uy}. (3.8)
To verify coherence, one shows that

My EVa,B(a< f=iq = ig | SU(MB@)). (3.9)
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To do this, fix an ordinal § and prove by €-induction in My that when-
ever sy(7) Eysy(Mpg) then ig(sy(7)) = ia(su(r)) for all a for which
SU(T) EU SU(MB@).

The fact that every element of My is in the range of some i, follows
from (3.6) since, for each a € ONg there is a v € ONg and a name /1, for
i, such that

[Va € Vy[u] = {py(5) : 6 € V3}]p =1

(In fact v = T'(«) works, where T is defined in M as in Theorem 6(6).)

Note that the i,’s need not form a class sequence in My since M (and
MPB) need not be definable in M. Moreover, though it would seem rea-
sonable that for each 7 € (Mp,)g, we should have i,(sy (7)) equal to 7,
the recursion one might hope to perform in order to prove this inside My
cannot be carried out since My does not know how 7y is constructed from
7. Nonetheless, the result can be proven by resorting again to the model
M?E. Assuming that in M, v E ON is such that 7 E Mg, and letting 1, be
as above, we can reason by recursion in M7 to obtain:

[, (7) = {11,(5) : 6 € dom 7} = {o 0 € 7} = 7] = 1.
Collapsing to My gives us that
Mu = iy (s0(7) = 0. (3.10)
We can now provide an improved version of Theorem 15(3):
THEOREM 16 (Minimality Theorem) Suppose M = (M, E) and N' = (N, F)

are models of ZFC. Suppose, in M, B is a complete Boolean algebra. Sup-
pose that U is B-generic over M. Suppose also that:

(A) There is a transitive embedding f : M — N.
(B) There isT' € N such that T'p = U.
Then there is a transitive embedding g : My — N for which gosy = syo f.

Proof. For the proof, since results are correct only “up to isomorphism,”
we identify both sy and the embedding f mentioned in part (A) with the
corresponding identity maps. This means that we are assuming M is a
transitive subset of both My and N, and that we must prove that g is a
transitive embedding which is the identity on M.

Since for each v € ONM, M B, € N, we can define define the maps i,
in A in the same way we defined the iy, in My. Before defining g, we
make several observations. Let v € ONM,
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(1) For all z € M for which M |= & € Mp,,
N Eiyr(Z) = .

2)N E i%p(u) =TI.
(3) For all 7 € (MB)

N EVtFdom 7[iyr(t) Fiyr(r) <= 7(t) FT]

4) I MEo,mEMp,y,

Mo b 0) B () [ e 7141 € 0
<= N Eiyr(o) Fi,r(r).

Likewise,

My Eiyu, (o) =iyu,(r) <= [o= 7‘]]%4 cU
= N [ iyr(0) =iyr(7).

The analogues of (1)—(3) for My, as well as the first parts of (4), follow
from (3.10). For (1), proceed by €-induction inside N as follows: Assuming
the result holds for all o for which N |= o F dom &, we have in N:

i) = {iyr() : 5 F & and i(y) FT}
={y:yFuz}=ux.

We have used here the fact that M is a transitive subset of N.
For (2), we have in N:

inr(u) = {iyr(d):bF B and u(b) FT}
—{bFB:bFT}=T.

Observation (3) follows immediately from the definition of i, . For (4),
it suffices to prove the result for each infinite cardinal . In order to perform
an induction involving pairs of names, we define in M a class function p on
MPE by

p(o) = least « such that o E Mp o41.
In M, let p, = p | Mp,. Clearly, p, € N. We prove both parts of (4)
simultaneously by induction in N on pairs (p,(c), p4(7)), well-ordered in
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the canonical way. We have
[cerlfteU (V, pdom -7t Ao =t]p)" e U

for some t € (dom T)g/l, [r(H)M € U and [o = 7]3! € U]

for some t € (dom 7)%', [r()M € U and N |= i r(0) = iy r(t)]

N E3tFdom 7[r(t) FT and iy p(0) = iy, (7)]

N =3t Fdom 7 [iyr(t) Fiyr(r) and iy (o) = iy, (7)]

N =iy p(0) Fiyr(7).

For the equality case, it suffices to prove the following;:

11reee

N iyr(o) Ciyr(r) <= [o CT]5 € U. (3.11)
We have:

(Aspdom +9(8) = [s€rlp)" €U

Vs € (dom o)M (o(syM e U = [s € 7]} € U)

N EVsFdom o (0(s) FT' = iy 1(s) Fiyr(7))

N EVs([sFdom o A o(s) FT| = iy r(s) Fiyr(7))
N E Vs ([iy,r(s) Friyr(0)] = iy,0(s) Fiqr(1))

N Eiyr(o) € iyr(7).

This completes the proof of Observations (1)-(4). We now define g by
. . N
9((Zv7uu(0))MU) = (i4,r(0))

By (3.9), g does not depend upon the choice of v. Moreover, g is well-defined
and one-one because

[cCcr]yteU

1111101

9((iyuy(0))M0) = g((iyu, (N))MV) - = iy (o) =iy r(n)V
— [o=7]3eU

— (Z'%UU(U))MU = (Z'%UU(T))MU-

We can establish the isomorphism property of g by replacing equality with
the appropriate membership relations in the above argument. The proof that
g My is a transitive subset of N follows immediately from the definition of
g and of the i,’s. The proof that g is the identity on M follows from
Observation (1) and its analogue for My . »

Typically, if U is B-generic over M, then U ¢ M; unfortunately, U & My
either, typically. The correct formulation is a minor variation of the the usual
result.
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PROPOSITION 17 Suppose M = (M, E) is a model of ZFC. Suppose M =
“B is an
atomless complete Boolean algebra”.

(1) If U is B-generic over M and U has a meet in Bg, then NU ¢ U.
(2) For any U that is B-generic over M, uy & s{;M.

(3) Suppose M |= ‘' C B and P = P(B)”. Then I is not internally P-
generic in M.

Proof of (1). Suppose U has a meet in By and A\ U € U. First we show that
AU is an atom of Bg: Suppose there exists b € Bg for which 0 < b < A U.
Let D ={c€ Bg:0 < c< AU}. By considering the dense set {d € Bg :
d< AU ordAN AU =0}, one shows that there is d € U N D. But now d is
an element of U below the meet of U; since this is impossible, A\ U must be
an atom of Bpg.

To complete the proof, let b = A U. By (1.4), M = “b is an atom of B.” m

Proof of (2). Suppose U is B-generic over M and uy € s;M. Let I' € M
be such that uy = sy (I'). We show that U has a meet in Bg and AU € U,
contradicting (1). Using (3.2) and Proposition 15, we have

s (Tg) = su(Me, = (), =U = st U,

and it follows that 'y = U. Thus I is a set X € M for which Xg C U; thus
I'r =U hasameet inU. u

Proof of (3). Suppose I' is internally P-generic in M (recall Definition 1(2)).
Let U =T'g. By (1.4), U is an ultrafilter in Bg; we show it is B-generic over
M: Suppose M E X C Band Xg CU. By (1.4) again, M = X CT. By
genericity of I'in M, M b= AX €T. By (1.4),b € U and b is the meet
of Xp in Bg. We have shown A(Xg) € U, and hence that U is B-generic
over M. But now again notice that I' itself is an X € M for which Xg C U,
and so AU = AT'g € U, contradicting (1).m

If b is an atom of B in M, the usual proof shows that the filter I'
generated by b is an ultrafilter that is internally P(B)-generic in M. Letting
U =TI'g, we have that

[su(D)]g, = sp(Te) = syU = (),

from which it follows that uy € s/[/]M .
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In the present context of possibly non-wellfounded models, since isomor-
phism is not the same as equality (as it is in the transitive case), it might
seem possible that forcing over M with an atomless complete Boolean al-
gebra always produces a model My that is not isomorphic to M. This is
not true, though. If, for example, M is itself a forcing extension (MO)UO
obtained by adding a single Cohen real, and My is obtained from M again
by adding a single Cohen real, then it is well-known that M = My. (To
work out the proof of this in the present context, use Proposition 18(1) and
Theorem 21.)

Next we show that forcing with isomorphic complete Boolean algebras
produces isomorphic forcing extensions.

PROPOSITION 18 . Suppose M = (M, E) is a model of ZFC.

(1) Suppose that, in M, B and C are complete Boolean algebras and i :
B — C is an isomorphism. Then for any ultrafilter U that is B-
generic over M, graph(i)"U is C-generic over M and i induces an
isomorphism iV : My — My, where U' = graph(i)’U. Moreover
iV o sy = sy

(2) In M, suppose B is a complete Boolean algebra. Suppose that A and B
are both B-valued models of ZFC and that there is an isomorphism (a
structure-preserving bijection) j : A — B, all defined in M. Suppose U
is B-generic over M. Let M 47, Mg denote the respective collapses
of A,BbyU. Then Moy = Mpu

Proof of (1). Using the fact that ¢ induces an isomorphism j : Bp —
Cp, it is easy to verify that U’ = graph(i)"U is C-generic over M. The
usual argument [2, 3.12], shows that, in M, 7 induces a Boolean-valued
isomorphism i : MB — M in particular, for all 0,7 E MZ and b E B,

[o=7]p="b <= [i(o) =i(")]c=i(b)

! )

[cerls=b <= [i(o) €i(r)]c=i(

=

Define (in V) iV : My — My by
iV (17) = unique o € My such that M = i(7) = o.

Verification that ¥ is a well-defined isomorphism makes use of the properties
of i; the proofs are routine so we omit them. To see that iV o sy = sy, use
the fact that, in M (&) = % for all z.m
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Proof of (2). Define f: M4y — Mpy by

Flof) = ((o))e-

Now the fact that f is a well-defined isomorphism follows from onto-ness of
j and the following two equations (which hold for all o, 7 € A):

J(m)ls
j(T)]]B.I

Suppose i : B — (' in M is an isomorphism and U is a B-generic
ultrafilter over M. Let U’ = i"U. Then we will say that U and U’ are
canonically isomorphic generic ultrafilters.

To conclude this subsection, we develop some of the ideas needed for
doing forcing with partial orders in M. We let M, P, B be defined as above.
Let e : P — B be a dense embedding. Let G be a filter in Pr. We will
say that G is P generic over M if, for every D € M for which M E
“D is dense in P” we have G N Dg # ().

[o=7]a =[ilo) =
[oerla =1ilo) €

PROPOSITION 19 Let M = (M, E) be a model of ZFC such that, in M, P
1s a partial order, B is a complete Boolean algebra, and e : P — B is a
dense embedding.

(1) Suppose U is B-generic over M. Define G by
G={pePg:e(p™ecU}. (3.12)
Then G is P-generic over M.
(2) Suppose G is P-generic over M. Define U by
U={beBrp:Ipc GM =e(p) <b}. (3.13)
Then U is B-generic over M.

Proof. The proof is very much like the usual one (see [15, Lemma 17.4]),
using Proposition 4 to weave in and out of M as needed. We prove the
genericity part of (1) and leave the rest to the reader.

Suppose M = “D is dense in P”. Then, in M, D, = €’D is dense in
B\ {0}. So (D.)g = graph(e)’(Dg) is dense in Bg \ {0}, and we can find
p € Dp such that e(p) € (D.)pNU. It follows that p € DpNG. =

Whenever we are given G as above, we will call U, as defined in (3.13),
the B-generic ultrafilter over M derived from G and e. Likewise, if we are
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given U, we call G, as defined in (3.12), the P-generic filter over M derived
from U and e. We suppress mention of e if it is clear from the context. It is
easy to verify that

U is the B-generic ultrafilter derived from G, e <=

G is the P-generic filter derived from U, e. (3.14)

Whenever we are given M, P, B, e as above, and G is P-generic over
M, we evaluate terms o € (MP)g by putting o = oy and we let Mg be
simply My, where U is the B-generic ultrafilter over M derived from G.

Whenever P and @ are partial orders (in M) having isomorphic com-
pletions, we say that P and @ are forcing equivalent and write P ~ Q.
Clearly, forcing with forcing equivalent partial orders produces isomorphic
extensions. We also make the following definition:

Suppose in M, i : ro(P) — ro(Q) is an isomorphism, ep : P — ro(P)
and eg : Q — ro(Q)) are dense embeddings, G is P-generic over M, H is
Q-generic over M, and graph(i)”[graph(ep)”G| = graph(eg)”H. Then G
and H are said to be canonically equivalent generic filters.

The next corollary gives more information about the canonical name for
a generic filter in P:

COROLLARY 20 Suppose M = (M, E) is a model of ZFC and, in M, P is
a partial order, B = ro(P), and e : P — B is a dense embedding.

(1) [g is the generic filter in P derived from u and ¢]H! = 1.
(2) [u is the generic ultrafilter in B derived from g and &]%! = 1.

(3) Suppose G is P-generic over M and let U be the B-generic ultrafil-
ter derived from G. Then G = (gy)p, (Where (gy)p, denotes the
extension of g;; € My).

Proof. Parts (1) and (2) follow easily from Theorem 9(3). For (3), we have
the following chain of equivalences for a given p € P:

(e(p))" €U
(e(p)™ € (w)g,
My = e(p) Eyuy
My EpEvgy

p € (80)p,-

peG

11117
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4 Two-step Iterations

Our objective in this section is to show that if, in M, B is a complete
Boolean algebra and, still in M, [x is a complete Boolean algebra | = 1,
then there is a complete Boolean algebra C' = B x y defined in M such that
forcing with C'is “the same as” forcing with B and then with y. The proof
requires maneuvers among the internal worlds of several (possibly) non-
wellfounded models, and these steps require some care. The usual proof for
transitive models makes substantial use of the transitive collapsing function
N, + MP — MIUJ; our proof requires that we work with the equivalence
classes by U directly. This leads only to an isomorphism (rather than equal-
ity) between the model obtained via a two-step iteration and that obtained
via its canonical one-step analogue.

We begin by fixing the following notation: M = (M, E) is a model of
ZFC, and P,B,w,x € M are such that, in M P is a partial order and
B =ro(P), and

([ is a partial order and x = ro(m)]5 = 1)™.
In M we define an equivalence relation ~ on the M-class
{o:0 EMP and [0 € x]p =1}

by putting o ~ 7 if and only if [c = 7] = 1. In M, let B*x denote a set of
representatives from the ~-equivalence classes (C' is a set by Theorem 5(5)
since each member of B x x is determined by a pair (A, W) where A is a
maximal antichain in B and W C dom y. In M, let C = B x x. In M,
define a meet operation A = A¢ on C by

ONT =L iff [onT=plp =1

In a similar fashion, define the operations Vg, *x¢. Still in M, define a map
u = up, : B — B x*x as follows: For each b € B, let o5 be the unique
element of C' such that o, = 1¢]p = b and o, = 0¢] = b*. The map is
well-defined by Theorem 5(4).

In M, let ep and é, witness that the completions of P and w are B and
X, respectively; that is, ep : P — B is a dense embedding and [é; : m — x
is a dense embedding |p = 1. Let P, = ej{;P and let m, be a B-name such
that [¢'m = 7e]p = 1.

Define P, * 7. to be the following suborder of C: Put ¢ € P, x 7, if and
only if there exist p € P, and u € C such that

[nwem]p=1 and o=u(p) Ac .
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An alternative definition of two-step iteration for partial orders is useful.
In M, we define P ® 7 as follows: Let T be a set of representatives of
equivalence classes determined by the equivalence relation [o = 7]p = 1,
defined on the M-class {0 : [0 € 7]|p = 1}. (Theorem 5(5) can be used to
show that 7 is a set.) Then the underlying set for P ® 7 is P x 7. (This is
a way of ensuring that “full names” are used in iterations, in the sense of
[19, Chapter VIII].) Identify elements (p, o), (¢,7) € P ® m whenever p = ¢
and p IF 0 = 7. Define an order relation on P ® 7 by putting (p, o) < (¢, 7)
ifand only if p < qgand pl-o < 7.

Given a B-generic ultrafilter U; over M and a xy,-generic ultrafilter Uy
over My,, we define

UpxUs={0o € (B*x)g:oy, €Us}.
If G is P-generic over M and Gg is 7, -generic over Mg, , we define
G1® Gy = {opp(p,0) € (P®m)g:p € Gy and 0g, € Ga}.

THEOREM 21 Suppose M = (M, E) is a model of ZFC and suppose B, x, C, P, m, ep,
€x, Pe, e, up, are defined as above.

(1) M = “C is a complete Boolean algebra under the operations Nc, Ve, *xc”.

(2) In M : The order relation <¢ induced by the Boolean operations
Ae, Vo, *¢ satisfies:

c<cT iff o<y T]lB=1.

3) In M, the map up, is a one-one complete homomorphism.

(3)

(4) In M, ro(P. x7.) = B * x.

(5) In M, P, @ me = P, * Te.

(6) In M, ro(P®7) = Bxx. Indeed, the function f : P@m — Bxx defined
in M by f(p,o) =ep(p) A\c 0e (where o, is a B-name for ez(c)) is a
dense embedding with the following property: Suppose that Uy, Us are
as above, and G1, Gy are the corresponding derived generic filters, or,
equivalently, that G1, G are as above and Uy, Uy are the corresponding
derived generic ultrafilters. Then

G1® Gy = {oppy(p,0) € (PR )y : f(p, o)™ € Ur* Un}.
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(7) Suppose Uy, Us, G1, Gy are defined as above.

(a) Uy x Us is B x x-generic over M.

(b) If f is defined as in (6), G1 ® G is the P ® w-generic filter over
M that is derived from Uy x Us and f.

(¢) There is an isomorphism g : (Muy,)u, — Muy,«vu, with the follow-
ing property: if suy,, St Uy, SUxU, Tepresent the usual insertion
maps, then

g ©Su Uy © SU; = SU #Uss

and g o sy,u, s a transitive embedding. Moreover, treating a B-
name o as a B * x name, we have

9(5U1U2(0U1)) = OUxUs- (4'1)

M =R My, "R (M),

\ lg
SU1xUg

My, v,

Remarks

(1) Among the standard proofs that show that two-step iterations are equiv-
alent to canonical one-step iterations, the one that seems most easily
adapted to the context of non-wellfounded models is the Boolean-
valued model approach. Part (7) of the theorem, along with Theo-
rem 23 below, provides the details of this adaptation. However, many
theorems about iterated forcing are most easily stated in terms of the
partial order approach. Part (6) of the theorem shows that, as is the
case for transitive ground models, the partial order approach can be
used in combination with the Boolean algebra approach.

(2) In light of (3), we will treat B as a complete subalgebra of B * y in
parts (6) and (7), and in the sequel.

(3) By (3.14), one may also conclude in (7b) that Uy *Us is the B x-generic
ultrafilter over M that is derived from G1 ® G5 and f.
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(4) In the case of transitive ground models, one easily proves that M [G1][G2] =
M[G1 ® Gs] by invoking the standard Minimality Theorem. In the
present context, the relevant minimality theorem is Theorem 16, but
this only gives us one-one embeddings in either direction between
(My,)u, and My, .y, — it is not obvious that either embedding is
onto; nor is it obvious that the embeddings are inverses of each other.
We have taken a simpler approach in our proof that these models are
isomorphic by using instead the well-known isomorphism between the
Boolean-valued models (M?Z)¢ and MP*C,

(5) With reference to (7c), it is easy to show that any isomorphism h :
(Mu,)y, — Mu,su, has the property that h o sy,y, is a transitive
embedding.

Proof of Theorem. Proofs of (1)—(4) can be found in [15] and [2]. For (5),
the map that works is P. @ me — P. 7. : (p,0) — pAc o (see [15] for more
details). For (6), because, in M, ro(P) = ro(F,) and [ro(7) = ro(w.)] s = 1,
it follows (see [19, VIIL.LK1]) that

ro(P®m) 2ro(P. @ me) 2ro(P. xm.) = B * x.

To obtain the specific results for f, we give an outline:

Argue in M. The fact that f”P ® 7 is dense in C follows from (5). To
see that (p,0) < (q,7) implies f(p,o) < f(g,7), note that, by (5) (and the
map given in the proof), it suffices to show that

(a) ep(p) < ep(q) and

(b) ep(p) IF éx(0) < éx(T).

Part (a) follows because ep is a dense embedding. For part (b), likewise,
since, in MPZ, ¢, is a dense embedding, we have

plko <1t = ep(p) <[o < 1] = ep(p) <[éx(0) < éx(T)]B-

To see that (p,o) L (q,7) implies f(p,0) L f(q,7), assume f(p,o) and
f(gq, ) are compatible. Then for some r € P,

ep(r)<[Fzx(z<er(c) Nx<ex(T))][g<[Fx(z <o A z<T)]B.

Let p be such that ep(r) < [u < o A u < 7]. It is easy to check that r must
be compatible with p, and any s below both of these must be compatible
with ¢. Pick ¢ below such an s and g. Then (¢, u) < (p, o), (¢,7), as required.
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To prove the last part of (6), it suffices to prove the following: For each
Op,/\/l(p7 0) € (P ®7T)E7

oppm(p, o) € G ® Gy <= (ep(p) Ao o) € Uy * Us.

The main step in the proof is the following claim:
Claim. ep(p)™ € Uy x Us if and only if ep(p)M € Uy.

Proof of Claim. For the proof, we set p. = ep(p)™. Recall that p, is
implicitly embedded in C' = B % x by identifying p. with the unique ¢, € C
for which [c. = 1,] B = pe and [c. = 0,]p = p}. Thus:

peEUl [[Ce:1X]]BEU1
(Ce)U1 € Uy
(pe)U1 €Uy

Pe € UI*U27

[

and this proves the claim.

Continuation of the Proof of the Theorem. Notice also that
oo € Uy Uy <= ((éx)u,(00,))"'"1 € Us. (4.2)
By the Claim and (4.2), we have

oppm(p, o) € G ® G p € G1 and o, € G
ep(p)™ € Uy and ((éx)u, (o0,) 0t € U
ep(p)M € Uy * U and o, € Uy % U

(ep(p) Ao ae)M € Uy * Uy,

ey

as required.

We turn to the proof of (7). First notice that (7b) follows immediately
from (6) and the genericity of Uy x Uy, by Proposition 19. To prove (7a)
— that Uy x Uy is B x x-generic (we leave the proof that it is an ultrafilter
in Cg to the reader) — begin by setting C' = B % y in M. Suppose M
“D is dense in C”.

Claim. My, = “Dy, is dense in xg,”.

Proof of Claim. In My, let 77, Ey, xu,. Then there is, in M, a ¢ in C
such that [o = 7]%' € Uy. Since M = “D is dense in C”, there isa § € M
such that M = J E D A 6 <¢ 0. Thus,

My, = ou, SXUl Tu, and dy, By, DUl'

36



Continuation of the Proof of the Theorem. Let @), S € My, be such
that
My, ES =Dy, and Q = xy, -

Since Uj is Q-generic over My, , it follows that there is 7y, € My, such that
T, € Spy, N Uz. We can find o € (MB), such that [o = 7]%' € U and
M = o ED. Thus, oy, = 1y, and oy, € Us. It follows that o € Uy * Us.
Thus, we have shown that (Uy x Us) N D # 0, as required.

Next, we prove that My,.v, = (My,)u,- As in [Be, Chapter 6], we
define in M the following class of names:

JX ={c EMP : [0 is a xy-name] 5 = 1}.

Bell [Be, Chapter 6] shows that JX can be endowed with a B % x-valued
structure with the following definitions:

oc=7]jx = uniquec€ Bxysuchthat [c=[oc=7],]p=1
X

0 € T|jx = unique ¢ € B x x such that [c=[oc € 7], ]| =1.
X

Using this structure, Bell shows that, in M, JX is isomorphic (as a B * x
structure) to MPB*X and it is easy to verify that in his proof, canonical
names are matched in the following way: For any x € M,

— I. (4.3)

8«

For the rest of the proof, we identify JX with MB*X| treating My, .y, as
obtainable by collapsing either of these B * x-valued models by U (this iden-
tification is justified by Bell’s result and by Theorem 18(2)). As a notational
consequence, we shall rewrite Boolean values [¢] jx as [¢] Bxy-

Define g : (My,)u, — Muy,su, as follows: Let o € (MP)g be such that
My, E “oy, is a x, -name”. Note that every element of (Mg, )u, is of the
form (o, )y, for such a ¢ — we shall call such names U;-good names. Let
o’ € (MP)p be such that [0’ is a y-name]' =1 and oy, = o, . Note that
o' € (JX)g. We shall call ¢/ an auxiliary name associated with o. Now,
using our identification of JX and MPZ*X, we define g at (oy, )y, by

g((UU1)U2) = 0;]1*U2 :

We verify that g is well-defined and one-one as follows: Given U;-good names
o, T with associated names o/, 7" € (JX)g, let ¢ € (B * x)g be such that

c=[o' = T']]g/ka. (4.4)
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By definition of the B * y structure on JX, we have in M:
[e=[c"=7] =1 (4.5)

We obtain the following chain of equivalences:

/ i
Ot xUs = TUyxUs
g((UU1)U2) = g((TU1)U2)'

(o0)vs = (ov)vy = [of, =70, 10, € Us
= cy, €U (by (4.5))
<— ceU xUy
— o' =715, elUixUy (by (44))
=
<

Replacing equality with appropriate forms of the membership relation (Ey,
or Ey,.u,) in the above chain of equivalences yields a proof that

(UUl)Uz Ey, (0U1)U2 — g((UU1)U2) Evy v, g((TU1)U2)'

To complete the proof, we must show that ¢ is onto. If U{Jl*Uz € My, «uy,
where o’ € (JX)g, then clearly ¢/ is a name associated with itself, and we
have easily that g((o7;,)uv,) = 0p, .7, @8 required.

To prove (7c), notice that

sU U (S0, (7)) = ((‘%)Ul)Ug'

Thus, by (4.3),

950,02 (501 @)= 9 ()0, ) = F01002 = 50005(2):

For the second part of (7c), if z € My, and z Ey,.v, 9(sv,v,(x)), there
isay € (My,)y, such that z = g(y) and so y Ey, su,v,(z). Since sy,v,
is a transitive embedding, for some w € My,, y = sy,u,(w). Therefore
z=g(y) = g(sv,u,(w)) € (g o sy,v,)" My, , as required.

Finally, we verify equation (4.1). When we view a B-name o as a B * x
name, we have automatically that [o is a x name]p = 1. Thus, o is its own
auxiliary name, and we have

gGsvi(00,) = (001 ), ) = 0v,00,m

The following is a useful technical corollary to Theorem 21(7). It says,
roughly, that the canonical isomorphism g : (My, )y, — My, v, respects
internal collapsing maps.
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COROLLARY 22 Suppose M = (M, E) is a model of ZFC and suppose
B,x,C, Pm ep, ér,P.,m., Uy, and Uy are defined as in Theorem 21. Let
g : (My,)u, — Muy,«v, be the canonical isomorphism and let sy, , Su,U,,
and sy, «v, be the insertion maps, again as in Theorem 21. Let iy, and
Uy, Uy, be the yth internal collapsing maps for My, and My, .v,, respec-
tively, as defined in (3.8). Then for all 0 € Mp 5,

9(su,0, (i%uul (s0,(0)))) = Z'%uUl*Ug (s014+05(0)).

Proof. By our remarks preceding Theorem 16,

Z'%uUl (s, (o)) = oy, and Z'%uUl*UZ (501+05(0)) = o4,

The result now follows from the final clause of Theorem 21(7). m

A version of the standard converse to Theorem 21(7) is also true; the
proof does not differ much from the usual one. We present it as a separate
result because we make slightly different assumptions from those used in
Theorem 21.

THEOREM 23 Suppose M = (M, E) is a model of ZFC. Suppose that in M,

B and C are complete Boolean algebras and [x is a complete Boolean algebra]p =
1. Suppose M = “h:C — B xx is an isomorphism”. Suppose U is a C-
generic ultrafilter over M.

(1) Let Uy = (graph(h)"U) N Bg. Then Uy is B-generic over M.

2) Define Uy C x,, as follows: For each 7 € (MP), for which [t €
Uy E

X]]g/l =1, let 7"—the name associated with T—be the unique element

of B x x for which [7' = 7]¥' = 1. Put 75, € Us if and only if
graph(h=1)(7') € U. Then Uy is a xu, -generic ultrafilter over My, .

(3) graph(h)"U = Uy * Us.
(4) MU = MUl*Uz'

Proof. For (1), we verify genericity only: Suppose X € M and Xp C Uj.
Suppose M =Y = h7!(X). Let ¢ be such that M = ¢ = A\ Y. Let
b be such that M = b = h(A\cY) = Ap,, X. Since c € U and h is an

isomorphism, we have

graph(h)(c) = b € graph(h)"U.

39



Since Xp C By and M = “B is a complete subalgebra of B x x”, it follows
that b = A, Xg € (graph(h)"U) N Bg = Us.

For (2), suppose My, E “Dj is dense in xg, \ {0}”. We show that
(Dy) By, N U2 # (), and leave the verification that Uy is an ultrafilter to

the reader. Let D1 be a name for D and let b € U; be such that
MEDLL [[D1 is dense in x| g.
Let D be such that
MED={cE(Bxx)\{0}:c<[cec Di]p}.

The usual argument (see [15, Lemma 23.4]) shows that

M = “D is dense in (B * x) \ {0}".
Now let ¢, z be such that

z € graph(h™1)(Dg)N U,

equivalently,
graph(h)(z) = ¢ € Dg N graph(h)"U. (4.6)

Since graph(h™1)(c) € U, by definition, ¢y, € U;. To complete the proof
of (2), it suffices to show My, [ cy, Ey, D1. Since M | ¢ E D, we have
M= c <[ce€ Di]p € B, and we conclude from (4.6) that

[c € Di]% € graph(h)"U N Bg = Uy.

Thus, My, = cy, Ey, D1, and we are done.

For (3), it suffices to prove graph(h)’U C U; * Us. Suppose ¢ € U and
let graph(h)(c) = d. Now by definition, di, € Us; that is, d € Uy * Us.

For (4), since we have shown that the graph of the isomorphism h carries
U to Uy xUs, we can invoke Theorem 18(1) to conclude that My = My, .v,. =

As usual, a kind of inverse operation for * can be defined as follows: In
M, suppose D is a complete Boolean algebra and B is a complete subalgebra
of D. Let o be a B-name satisfying [o is the filter in D generated by ug]p=1.
Then D/B is a B-name 7 satisfying [t = D/o] 5 = 1. The proof of the next
proposition can be found in [15] and [2].

PROPOSITION 24 Suppose in M we have that B is a complete subalgebra of
a complete Boolean algebra D. Then D = B (D/B). =
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5 Iterated Forcing

Since iteration of partial orders takes place entirely within the ground model,
there are no concerns about iterated forcing that are unique to the setting of
non-wellfounded ground models. A typical application of the usual Factor
Lemma (which is proven entirely within the ground model) involves breaking
up a model M[G,] obtained by iterated forcing into a model M[G][Go—-]
obtained by two-step forcing. In the context of arbitrary ground models,
this sort of maneuver is addressed by our Two-Step Iteration Theorem (and
so, using the analogous notation of this paper, we would have that My, =
(Mu,)y,_,)- Therefore, this section on iterated forcing has been included
just for the sake of completeness. Since we are using the Boolean algebra
approach to forcing, we follow closely the treatment in [15].

We begin by fixing an arbitrary model M = (M, E) of ZFC. Working
in M, an a-stage iterated forcing is an object

{<P§:£§a>v<B§:é§a>v<e§:é§a>v<ﬂ-§:£<a>v<i§7:£<7§a>

satisfying

(1) Each P is a partial order.

(2) Each B¢ is a complete Boolean algebra and e¢ : P; — B is a dense
embedding.

(3) For all £ < a, [m¢ is a partial order] g, = 1.

(4) For all{ < v < @, i¢gy : B¢ — By is a one-one complete homomorphism,
and (i¢y : £ <7 < ) is a commutative system.

(5) For each & < o, Py = Pe @ me.

(6) If B < « is a limit, then Pg is either the direct or inverse limit of the
Pe, £ < 3, and i¢g are the corresponding embeddings.

As in [15], elements of P, can be identified with functions p = (p¢ : £ < )
satisfying

(A) V¢ <al(pl§e P);
(B) V& < a([pe € me] B, = 1);

C)Vg,r e Pa(q<ar <= VE<algl{<¢r[&and q[Elke g <x 7).
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Moreover, P, consists of all functions that satisfy (A)—(C) if a is a limit
and P, is an inverse limit. If P, is a direct limit, then P, consists of all
functions p = (p¢ : £ < o) satisfying (A)—(C) and also

I <aVB(B>E¢ = pe=1).
We may also assume that
the embeddings e¢, : B¢ — B, satisfy egy(p) =p~ 1717 . ... (5.1)

When P, is a direct limit, it is sometimes useful to identify its elements with
functions p = (p¢ : £ < ) for some 3 < a that includes the support of p;
see [1].

As usual, one can prove the standard Factor Lemma, which says that an
iteration P, can be factored as P3® 73, where 73 is, in MPBs, an (a— [3)-stage
iteration. See [15, Lemma 36.6].

Our statement of the Factor Lemma here will make use of simplifications
due to Baumgartner [1]. We write G,, to denote a filter that is P,-generic
over M. For § < a, we assume Gg = {p | § | p € G4 }; this assumption is
warranted by the fact — which can be proved using the standard argument
[1, Theorem 1.2] (carried out inside M) — that the set {p | 5| p € Gu} is
in fact Pg-generic over M.

As a further simplification, we may specify the tail 7, of the previous
paragraph as a Pg-name for the set Pg,, which is defined in M as follows:

The ordering on Pg, is defined relative to a generic Gg by setting f < g
(in M) if and only if for some p € Gg, M =pU f < pUgin P,. (Here,
we have identified Pg, with its image sy, (Pga), where sy, : M — My, is
the insertion map and Ug is the generic ultrafilter derived from Gg.) The
standard proof [1, Theorem 5.1], carried out in the ground model, then
establishes that P, can be viewed as a two-step iteration of Pg and 73:

THEOREM 25 ([1]) In M, P, is isomorphic to a dense subset of P3 ® 73.m

Then, the Factor Lemma establishes that 73 itself is a a@ — 3-stage iter-
ation, as viewed in Mg,:

THEOREM 26 ([1]) In M,
LlFp, 7g is isomorphic to an a — (3-stage iteration,

where 1 = 1p, and |-p, is the forcing relation for Pg, in M.
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