
THE WHOLENESS AXIOM AND LAVER SEQUENCES

Annals of Pure and Applied Logic, October, 2000, pp. 157-260.

Paul Corazza1,2

Department of Mathematics and Computer Science
Boise State University
Boise, ID 83725

e-mail: pcorazza@kdsi.net

Abstract. In this paper we introduce the Wholeness Axiom (WA), which asserts
that there is a nontrivial elementary embedding from V to itself. We formalize
the axiom in the language {∈, j}, adding to the usual axioms of ZFC all instances
of Separation, but no instance of Replacement, for j-formulas, as well as axioms
that ensure that j is a nontrivial elementary embedding from the universe to
itself. We show that WA has consistency strength strictly between I3 and the
existence of a cardinal that is super-n-huge for every n. ZFC + WA is used
as a background theory for studying generalizations of Laver sequences. We
define the notion of Laver sequence for general classes E consisting of elementary
embeddings of the form i : Vβ → M , where M is transitive, and use five globally
defined large cardinal notions—strong, supercompact, extendible, super-almost-
huge, superhuge—for examples and special cases of the main results. Assuming
WA at the beginning, and eventually refining the hypothesis as far as possible,
we prove the existence of a strong form of Laver sequence (called special Laver
sequences) for a broad range of classes E that include the five large cardinal
types mentioned. We show that if κ is globally superstrong, if E is Laver-closed
at beth fixed points, and if there are superstrong embeddings i with critical point
κ and arbitrarily large targets such that E is weakly compatible with i, then our
standard constructions are E-Laver at κ. (In particular, if κ is super-almost-huge
(superhuge, super-2-huge), there is an extendible (super-almost-huge, superhuge)
Laver sequence at κ.) In addition, in most cases our Laver sequences can be made
special if E is upward λ-closed for sufficiently many λ.
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2000 Mathematics Subject Classification: Primary 03E55; Secondary 03E65.

Keywords and phrases. large cardinal, wholeness axiom, Laver sequence, regular class, elemen-
tary embedding, huge cardinal, extendible cardinal, almost huge cardinal, special Laver sequence.

1The results of this paper were presented at the 1995-1996 Annual Meeting of the ASL, March
9-12, at the University of Wisconsin, Madison.

2This research was partially supported by Maharishi Vedic University, Vlodrop, Netherlands,
where the author was a research fellow from November 1994 to April 1995.

1



In this paper, we discuss a new large cardinal axiom, which we call the Wholeness Axiom
(WA), and apply it to study several questions concerning Laver sequences.

The Wholeness Axiom asserts the following:

(1.1) “there is a nontrivial elementary embedding from V to itself”

The axiom was first introduced in [7] as a candidate for the “right” strengthening of the Axiom
of Infinity, strong enough to provide a foundational theory that could accommodate virtually all
known large cardinal axioms. We argue in [7] that some form of (1.1) is natural, based on criteria
of elegance, simplicity, generalization, and other “first principles.” As is well known, Reinhardt
[26] asked whether such an embedding could exist, and shortly thereafter, K. Kunen impressively
demonstrated in [21] that the existence of such an embedding is inconsistent with ZFC. Convinced
of the naturalness of such an axiom, however, we formulated WA in an effort to provide the minimal
weakening of (1.1) that avoids the inconsistency given in Kunen’s Theorem, yet retains sufficient
strength to provide an umbrella theory for large cardinals.

So far in the literature, efforts to obtain weakenings of (1.1) that are still strong but not
inconsistent have focused primarily on the fact that Kunen’s proof of the inconsistency of a j :
V → V depends on the Axiom of Choice; a central open question that has remained is whether
some sort of inconsistency proof could be found for the existence of such a j using only ZF. In
unpublished work, Woodin has obtained the following results which show that a global version of
such an axiom is extremely strong, even without AC:

1.1 Theorem (Woodin). Assume ZF. Assume there is an initial ordinal κ such that for all α ∈ ON

there is an elementary embedding j : V → V with critical point κ such that j(κ) > α. Then there

are forcing extensions M,N such that

(1) in M , the Axiom of Choice holds and there are j, λ such that j : L(Vλ+1) → L(Vλ+1) is an
elementary embedding with critical point κ (and λ > κ); and

(2) there is an elementary embedding j : N → N with critical point κ and < λ+-DC holds in N ,

where λ = sup({jn(κ) : n ∈ ω}).

Another approach has been to weaken the notion of “elementary embedding” to try to achieve
consistency. Blass and, independently, Trnková, obtained the following result along these lines:

1.2 Theorem (Blass [5], Trnková [28]). The following are equivalent:

(1) There is an exact functor from the category of sets to itself which is not naturally isomorphic
to the identity functor.

(2) There exists a measurable cardinal.

Our approach has been to weaken (1.1) by removing every “shred” of definability of j in V . In
order to make this precise, it is helpful to study Kunen’s Theorem more carefully. The assertion
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that there is no nontrivial elementary embedding from the universe to itself is, as is well-known,
not formalizable in ZFC alone. In particular, in order to arrive at a contradiction in the proof, it
is necessary to take the supremum of the sequence 〈jn(κ) : n ∈ ω〉, and this step involves the use
of an instance of Replacement in which ‘j’ occurs. Whether such an instance of Replacement is
true cannot be determined in ZFC and must be viewed as an assumption, as part of a theory that
extends ZFC. (We note here, in accord with Hamkins [15], that the content of Kunen’s Theorem
is not merely the assertion that no nontrivial elementary embedding from the universe to itself is
definable—this fact can be proved with considerably less effort. Rather, as we argue here, Kunen’s
proof entails an essential application of Replacement in an extended theory. See Hamkins’ excellent
discussion of this point in [15].)

We suggest here perhaps the simplest way to formalize Kunen’s Theorem and describe how
we can obtain WA in this formal context. We add a single unary function symbol j to the usual
language {∈} of ZFC and add to the axioms of ZFC other axioms asserting that j is an elementary
embedding (φ(x1, . . . , xn) ⇐⇒ φ(j(x1), . . . , j(xn)) for each formula φ) and that Separation and
Replacement hold for all formulas, including those with occurrences of j. Let us call this extended
theory, in this extended language, ZFCj. With this theoretical framework, Kunen’s result can be
re-stated as follows:

(1.2) ZFCj � “j must be the identity.”

Perhaps more of the flavor of Kunen’s result is captured by wording the result this way:

(1.3) “There is no model of ZFCj in which j is not the identity.”

The notion that, for a subcollection X of a model M of ZF, the expanded model (M,X)
satisfies all instances of Replacement for formulas of the extended language has been studied by
Enayat [13] and others (see references in [13]). Under these conditions, Enayat calls such an X

a class in M ; we do not use this terminology here since we prefer to follow the more common
convention in set theory that a class is just a definable subcollection of M . Nevertheless, isolating
this concept is very useful here, and so we will say, for our purposes, that such an X is weakly
definable in M . (As we show in Section 3, weak definability is appropriately named in that it is
implied by definability.) With these notions, Kunen’s Theorem can be re-stated as follows:

(1.4)
“If M is a model of ZFC, there is no nontrivial elementary

embedding from M to M that is weakly definable in M .”

Our approach to obtaining a version of (1.1), therefore, is, the following: In the context of
the extended language {∈, j}, add to the usual axioms of ZFC all instances of Separation but no
instance of Replacement, for formulas in which j occurs. We also add to the axioms the assertion
of nontriviality: ∃x (j(x) = x). And we refer collectively to the axioms that we have added to
ZFC as the Wholeness Axiom or WA. Assuming WA, the step in Kunen’s proof in which one
obtains the supremum of 〈κ, j(κ), j2(κ), . . .〉 cannot be taken, so the theory ZFC +WA cannot be
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proven inconsistent (at least not with methods that are currently known). Using the notion of weak
definability, we can re-state WA — in contrast to (1.4) — as follows:

(1.5) “There is a nontrivial elementary embedding from V to V .”

Then, by Kunen’s Theorem, any such embedding must not be weakly definable in V .
A familiar setting in which WA holds arises when there is a nontrivial elementary embedding

j : Vλ → Vλ; in that case, 〈Vλ,∈, j〉 |= ZFC +WA. Indeed, this is our “intended model” of WA.
However, there are other much weaker examples of elementary embeddings from a model of set
theory to itself that are not weakly definable: for instance, j : L → L or j : K → K (where L

is Gödel’s constructible universe and K is the core model). These do not provide models of WA,
however, precisely because we have included the axiom schema of Separation for j-formulas; indeed,
to exclude these types of embeddings, it suffices to require that for each set x, j |\ x is also a set.
(Our definition of WA in earlier preprints of this paper used the latter as an axiom rather than
Separation for j-formulas for just this reason.3) Moreover, WA has much stronger consequences
than such embeddings: We show in Section 3 that if j : V → V is a witness to WA, then its critical
point κ must be the κth cardinal that is super-n-huge for every n ∈ ω; in that section we prove
several other results that highlight the strength of the axiom.

In Section 4, we use the theory ZFC +WA as a framework for studying Laver sequences. By
now, Laver sequences have appeared enough in the literature to merit investigation as objects of
interest in their own right. Laver sequences were first introduced in [22], where Laver used them
in his proof that it is consistent, relative to a supercompact κ, that supercompactness cannot be
destroyed by κ-directed closed forcing. Gitik and Shelah [14] obtained a similar result for strong
cardinals: Assuming a strong cardinal and using a Laver sequence for strong cardinals, they build a
model in which strong-ness is indestructible under κ+-weakly closed forcings that satisfy the Prikry
condition. Barbanel [2] used a 2-huge cardinal and a local version of a Laver sequence for huge
cardinals to build a model in which the following holds: Whenever there is a modelM obtained by
κ-directed closed forcing (using a partial order of cardinality λ less than the target of κ) in which
hugeness of κ is destroyed, there is, in M a λ+-directed closed forcing that restores the hugeness
of κ. From a different direction, Hamkins [16] uses a version of Laver sequences for supercompact
and strong cardinals to construct models in which κ-concerned forcing (forcing which preserves
κ<κ and κ+ but not P (κ)) always destroys even measurability. Finally, one of the earliest and
most important applications of Laver sequences was the proof of the consistency of PFA from a
supercompact (cf. [11]).

Questions about Laver sequences that seem natural to ask include: Is there a direct con-
struction of a Laver sequence (Laver’s original proof was by contradiction)? Which large cardinals
admit their own brand of Laver sequence and under what large cardinal hypotheses can they be

3J. Hamkins [15] has formulated a hierarchy of Wholeness Axioms in which the weaker of
these two versions of WA is located at the bottom and the stronger is located at the top, with ω

many refinements in-between. He shows that they have strictly increasing consistency strengths.
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built? Can Laver sequences be constructed with special properties (definable or undefinable in Vκ;
fast-growing; absolute for various inner models)?

In tackling these questions, we found that the theory ZFC + WA provided a useful context
and interesting answers. To begin, WA can be used to motivate a direct construction of a Laver
sequence that admits an easy generalization to other globally defined large cardinals; in this paper,
we consider specifically strong, extendible, super-almost-huge, superhuge cardinals, and of course,
supercompact cardinals (the original context for the study of Laver sequences). Moreover, we
generalize the construction further by considering classes E of set embeddings of the form i :
Vβ → M (where M is a transitive set) in place of specific large cardinals. Because of the strong
consequences of WA, we are able to provide a single construction and, essentially, a single proof
for the existence of Laver sequences corresponding to a broad collection of classes of embeddings.
Moreover, the construction we use, and the proof that it works under WA, has the advantage that
the resulting Laver function f can be forced to agree with an arbitrary function t : κ → Vκ on a
normal measure 1 set. This flexibility allows us to construct quite a variety of Laver sequences.
For instance, under WA our construction can be adapted to give a Laver function f such that the
function α �→ |f(α)| dominates each h ∈ κκ definable in Vκ on a normal measure 1 set. Moreover,
this function has strong properties from which we prove that it is consistent for κ to be the κth
extendible cardinal.

In Sections 5 and 6, we carry out the program of Section 4 with the aim of weakening the
large cardinal hypothesis as far as possible. The theme of Section 5 is to answer the question: To
what extent can the theorems of Section 4 be proven using elementary embeddings of the form
j : V → N instead of the embedding j : V → V given by WA? We obtain a strong form of a Laver
sequence for each of the five large cardinals under fairly modest hypotheses. At the same time, we
provide abstract conditions on a class E of embeddings under which such a class admits its own
brand of Laver sequence. In Section 6, we show how to obtain essentially the same results, but
with much less work, by modifying the construction slightly.

Our work in Sections 5 and 6 is also intended as a beginning step in a related line of research
that seems timely. Given the considerable number of large cardinal axioms that have emerged, it
would seem natural to have an abstract theory of large cardinals from which one could deduce a
substantial portion of the current body of knowledge concerning large cardinals. (Perhaps a useful
comparison is the historical development of abstract group theory: The abstract theory began
to emerge on the basis of relatively few examples of groups.) The problem of generalizing Laver
sequences is a reasonable starting point for this program because, without having at least some kind
of general context, it isn’t possible to define what one means by “Laver sequence” for large cardinals
in general. Our “abstract objects” of study in this program (analogous to abstract groups) have been
classes E of embeddings. What we found in attempting to prove the existence of general kinds of
Laver sequences for such classes E was that certain properties of these classes appeared particularly
relevant (“coherence”, “Laver-closure”, “compatibility”, to name a few); these properties, as one
would expect, are carefully formulated generalizations of properties that are familiar in the context
of one or more specific large cardinals. We also found it useful, again, to have, as a starting point,
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the theory ZFC+WA as our background theory, allowing us to reason about properties in a simple
context before attempting to optimize hypotheses. From this starting point, we hope to obtain
a much richer abstract theory. One direction for further work is to obtain abstract conditions on
classes E for which E-Laver sequences are indestructible after certain preparatory forcing has been
done (in analogy with the results on supercompact cardinals).

Section 7 is devoted to answering a number of technical questions that arise in Sections 4-6
but that are not really part of the main thread of ideas. And Section 2 is devoted to preliminaries.
Many of the results there are known (though some have not appeared in published form); others
represent slight improvements of known results. There are also a number of technical results in
Section 2 that serve as lemmas for work in Sections 4-6, but belong in a section on preliminaries.

Finally, the Appendix consists of a few corrections that needed to be made to our work in
[9]; that paper built on the results of the present paper but was published before the refereeing
process of the present paper was complete. Thus, some errors propagated from earlier versions of
this paper into [9]. The Appendix addresses these issues.

To conclude this introduction, I would like to gratefully acknowledge the logicians and set
theorists who took the time to discuss some of these ideas with me, including M. Benedikt, T.
Drucker, J. Hamkins, M. Jahn, A. Kanamori, K. Kunen, R. Laver, M. McKinzie, M. Magidor, S.
Shelah, R. Solovay, C. Tuckey, and H. Woodin. Finally, I would like to thank the referees who
have reviewed this paper through several incarnations: The first of these referees suggested a more
elegant formalization of WA and a better direct construction of a Laver sequence, both of which I
have used. The second referee spotted quite a number of serious errors and made countless helpful
suggestions.

§2. Preliminaries.

This section is dedicated to giving the notation, definitions and background theorems needed
for the rest of the paper. Many of the propositions stated here are small refinements of known (but
in some cases unpublished) results; one or two are new and perhaps of independent interest. All
are stated here for use in later sections.

We begin with some terminology and notational conventions. A beth fixed point is a cardinal
α such that α = |Vα|. It is well known that there is a sentence σ such that “∀αVα |= σ iff α is a beth
fixed point” is provable in ZFC (see [27, p. 86]); we shall call such a sentence a beth fixed point
sentence. Many of our results will involve indexed sequences of elementary embeddings (in working
with almost-huge cardinals, for instance), and we will denote the codomains of these embeddings
by subscripting M or N with ordinals. (Moreover, in this paper, an expression like Mλ will never
have the meaning (Vλ)M .)

Some Large Cardinal Axioms

If M and N are transitive classes (possibly proper), if j : M → N is elementary, and some
ordinal is moved by j, we denote the least ordinal moved by j—the critical point of j—by cp(j).
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We proceed to the definitions of the large cardinal concepts we will study in this paper; more
information about these notions can be found in [12], [17], [18], [19], [20], [26], [27].

Our terms super-almost-huge and globally superstrong do not seem to have appeared in the
literature; they are defined as the global versions of almost huge and superstrong, in the same
spirit as superhuge is the natural global version of huge (see [4]). Our version of “strong” and
“superstrong” follows [24].

2.1 Definition. Suppose κ is an infinite cardinal.

(1) For λ > κ, κ is λ- supercompact if there is an inner model M and an elementary embedding
j : V → M such that M is closed under λ-sequences, cp(j) = κ, and j(κ) > λ; the embedding
j is called a λ-supercompact embedding. κ is supercompact if κ is λ-supercompact for every
λ > κ.

(2) For λ > κ, κ is λ-strong if there is an inner modelM and an elementary embedding j : V → M

such that cp(j) = κ, j(κ) > λ, and Vλ ⊂ M ; the map j is called a λ-strong embedding. κ is
strong if κ is λ-strong for every λ > κ.

(3) A cardinal κ is superstrong if there is an inner model M and an elementary embedding j :
V → M such that cp(j) = κ and Vj(κ) ⊂ M . The map j is called a superstrong embedding.
κ is globally superstrong if for each γ > κ, there is a superstrong embedding j : V → M such
that cp(j) = κ and j(κ) ≥ γ.

(4) For η ≥ 0, κ is η-extendible if there are ζ and an elementary embedding j : Vκ+η → Vζ such
that cp(j) = κ and η < j(κ) < ζ. κ is extendible if κ is η-extendible for every η.

(5) κ is almost huge if there exists an inner model M and an elementary embedding j : V → M

such that cp(j) = κ and, for each α < j(κ), M is closed under α-sequences; j(κ) is called the
a.h. target of j and j is called an a.h. embedding. κ is super-almost- huge if, for each γ there
are λ > γ and jλ : V → Mλ such that cp(jλ) = κ, jλ(κ) = λ and for all α < λ,Mλ is closed
under α-sequences.

(6) For each n ∈ ω, κ is n-huge if there exists an inner model M and an elementary embedding
j : V → M such that cp(j) = κ and M is closed under jn(κ)-sequences; j(κ) is called the
target of j and j is called an n-huge embedding. κ is super-n-huge if, for every λ > κ, there is
an n-huge embedding j such that cp(j) = κ and j(κ) > λ. (See [4] for an equivalent definition.)

(7) I3(κ) is the statement that for some λ > κ there is an elementary embedding j : Vλ → Vλ with
critical point κ.

(8) I1(κ) is the statement that for some λ > κ there is an elementary embedding j : Vλ+1 → Vλ+1

with critical point κ.

(9) I0(κ) is the statement that there is an elementary embedding j : L(Vλ+1) → L(Vλ+1) with
critical point κ, where λ = sup{jn(κ) | n ∈ ω}.
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Supercompact Cardinals

Recall that κ is λ-supercompact if and only if there is a normal ultrafilter over Pκλ (see [18]).
In particular, if j : V → M is a λ-supercompact embedding, the set

U = {X ⊂ Pκλ : j′′λ ∈ j(X)}

is a normal ultrafilter over Pκλ; U will be called the normal ultrafilter over Pκλ derived from j.

Conversely, given a normal ultrafilter U over Pκλ, the elements of the ultrapower by U—as well as
its transitive collapse—will be denoted [g]U . The canonical embedding determined by U is the map
iU : V → V Pκλ/U ∼= Mλ defined by iU (x) = [cx]U where cx is the constant function with value x;
iU is a λ-supercompact embedding.

For each α ≤ λ, define functions rα, tα over Pκλ by

rα(x) = x ∩ α;

tα(x) = ot(x ∩ α).

Then in Mλ, [rα]U = j′′α and [tα]U = α.
If j : V → M is a λ-supercompact embedding, U the derived normal ultrafilter over Pκλ, and

Mλ
∼= V Pκλ/U , then there is an embedding k : Mλ → M defined by k([g]U ) = j(g)(j′′λ) with the

properties that j = k ◦ jU and k |\ λ+ = idλ+ . In the special case in which j = iW where W is
a normal ultrafilter over Pκµ, µ ≥ λ, k can be defined by k([g]U ) = [g̃]W where g̃(x) = g(x ∩ λ).
Moreover, it can be shown that U =W | λ where we define X | λ ⊂ Pκλ and W | λ by:

X | λ = {x ∩ λ : x ∈ X};
W | λ = {X | λ : X ∈ W}.

Strong and Superstrong Cardinals

We obtain alternative definitions of strong and (globally) superstrong cardinals using extenders.
To fix notation, we review the basics of the theory of extenders; the proofs of the preliminary
propositions below appear in [24].

2.2 Definition. Let Y be a transitive set and let κ be a cardinal. An extender with critical point
κ and support Y is a system E = 〈Ea : a ∈ <ω[Y ]〉 with the following properties:
(a) Each Ea is a κ-complete measure on aVκ, and at least one Ea is not κ+- complete.

(b) The Ea are compatible; i.e., if X ⊆ aVκ, Ea(X) = 1, and a ⊆ b, then

Eb({ f : f |\ a ∈ X }) = 1.

(c) Ea

({ f | f : (a,∈) ∼= (range(f),∈) }) = 1.
(d) If F : aVκ → Vκ and

Ea

({ f : F (f) ∈ ∪(range(f)) }) = 1,
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then there is a y ∈ Y such that

Ea∪{y}
({ f | F (f |\ a) = f(y) }) = 1.

(e) Ult(V,E) is well-founded.

2.3 Remark. In part (e) of the above definition, Ult(V,E) is defined as follows: For all a, b ∈ <ω[Y ],
and all F : aVκ → V,G : bVκ → V , say F ∼ G iff there is c ∈ <ω[Y ], c ⊇ a ∪ b, such that

Ec

({h : F (h |\ a) = G(h |\ b) }) = 1.
Let [F ] denote the set of all members of minimal rank of the ∼-equivalence class of F . Similarly, for
all a, b ∈ <ω[Y ], and all F : aVκ → V,G : bVκ → V , define the membership relation R by [F ]R [G]
iff there is c ∈ <ω[Y ], c ⊇ a ∪ b, such that

Ec

({h : F (h |\ a) ∈ G(h |\ b) }) = 1.
Now Ult(V,E), the ultrapower of V by E, is the proper class model having domain

{
[F ]E : (∃a ∈

<ω[Y ])(F : aVκ → V )
}
and having membership relation R. We will write [F ] for [F ]E when there

is no possibility of confusion. As usual, VLoś’ Theorem holds, giving us the canonical elementary
embedding i : V → Ult(V,E) : x �→ [cax] for some (any) a ∈ <ω[Y ], where cax :

aVκ → V : f �→ x

is the constant function with value x. In this paper, Ult(V,E) will always be well-founded; we
identify each [F ] ∈ Ult(V,E) with its image under the Mostowski collapsing isomorphism, making
Ult(V,E) a transitive class model of ZFC containing all the ordinals.

2.4 Proposition. Let E = 〈Ea : a ∈ <ω[Y ]〉 and let iE : V → Ult(V,E) be the canonical
embedding.

(1) iE | Vκ = idVκ
but iE(κ) > κ.

(2) For each y ∈ Y and a ∈ <ω[Y ] with y ∈ a, let Ha
y (f) = f(y), for all f ∈ aVκ. Then in

Ult(V,E), y = [Ha
y ].

2.5 Proposition. Suppose j : V → N is an elementary embedding with N transitive and with

critical point κ. Let Y be a transitive set with κ ∈ Y ⊆ Vj(κ) ∩N . Define E = 〈Ea : a ∈ <ω[Y ]〉 as
follows: For each a and all X ⊆ aVκ, let Ea(X) = 1 iff j−1 |\ j(a) ∈ j(X). Then

(a) E is an extender.

(b) Define k : Ult(V,E)→ N by

k([F ]) =
(
j(F )

)(
j−1 |\ j(a)

)
whenever F : aVκ → V. Then k is an elementary embedding, k |\ Y = idY , and j = k ◦ iE .

2.6 Definition. The extender E defined from j in the above proposition will be called the extender
derived from j with support Y .
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Thus, given a λ-strong embedding with critical point κ, we can obtain an extender E with
critical point κ and support Vλ. The converse is also true, but, given E, the embedding iE will
not in general be the required embedding since it is possible for iE(κ) = λ (note, though, that λ
cannot be a successor ordinal in this case); whenever this is the case, one can use iE ◦ iE instead;
we provide more details in the comments following Definition 2.16. The parallel equivalence for
superstrong cardinals is immediate. Summing up:

2.7 Proposition. Suppose κ is an infinite cardinal.

(1) Suppose κ < λ. Then κ is λ-strong if and only if there is an extender E with crtical point κ

and support Vλ.

(2) κ is superstrong if and only if there are λ,E such that λ > κ and E is an extender with critical

point κ and support Vλ, and iE(κ) = λ.

Super-almost-huge Cardinals

There is a standard ultrafilter definition of almost-huge cardinals: Recall (see [27]) that, for
ordinals κ < λ, a sequence 〈Uη : κ ≤ η < λ〉 is coherent if for each η, Uη is a normal ultrafilter over
Pκη and if κ ≤ η < ζ < λ, Uη = Uζ | η. For each such η, let Mη denote the transitive collapse of
the ultrapower by Uη and let jη : V → Mη denote the canonical embedding. Let kηζ : Mη → Mζ

denote the embeddings (described earlier) such that jζ = kηζ ◦ jη and kηζ |\ η + 1 = idη+1. Let M
denote the direct limit of the directed system {Mη; kηζ : κ ≤ η < ζ < λ}; we identify M with its
transitive collapse. There are embeddings kη :Mη → M and an embedding j : V → M so that for
each η, kη ◦ jη = j.

We will call the following condition on a coherent sequence 〈Uη : κ ≤ η < λ〉 the SRK-
Criterion:

SRK(κ, λ). λ is inaccessible and for all η, ρ for which κ ≤ η < λ and η ≤ ρ <

jη(κ) there is ζ such that η ≤ ζ < λ and kηζ(ρ) = ζ.

In [3], Barbanel isolates an equivalent condition in terms of ultrafilters; we modify his condition
slightly and call it Barbanel’s Criterion (B(κ, λ)); in Section 6, we show that this condition is
equivalent to the condition formulated by Barbanel in [3], and also to SRK(κ, λ).

B(κ, λ). λ is inaccessible and for all η for which κ ≤ η < λ and all h : Pκη → ON,
if {x ∈ Pκη : ot(x) ≤ h(x) < κ} ∈ Uη then there is ζ such that η ≤ ζ < λ and

{x ∈ Pκζ : ot x = h(x ∩ η)} ∈ Uζ .

If κ < λ and there is a coherent sequence 〈Uη : κ ≤ η < λ〉 as above that satisfies B(κ, λ), then
κ is almost huge and the embedding j : V → M obtained from the direct limit construction is an
a.h. embedding.

Conversely, starting from an a.h. embedding j : V → M , one obtains a coherent sequence
〈Uη : κ ≤ η < j(κ)〉 by putting X ∈ Uη if and only if j′′η ∈ j(X). Moreover, the sequence
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satisfies B(κ, j(κ)). We shall say that 〈Uη : κ ≤ η < j(κ)〉 is the coherent sequence derived from j.
Summarizing:

2.8 Proposition ([3], [27]). Suppose κ is an infinite cardinal and λ > κ. Then κ is almost huge

with a.h. target λ if and only if there is a coherent sequence 〈Uη : κ ≤ η < λ〉 satisfying B(κ, λ).

N

✟✟✟✟✟✟✯
j

�
�

�✒
k

V i✲ M

✻

qη

❍❍❍❍❍❍❥
iη

❅
❅

❅


 kη

Mη

In analogy with many of the smaller large cardinals, if we obtain 〈Uη : κ ≤ η < j(κ)〉 from
an a.h. embedding j : V → N and then obtain the embedding i : V → M from the direct limit
of ultrapowers by the Uη, as described above, one can always find an embedding k :M → N such
j = k ◦ i and k |\ Vj(κ) = idVj(κ). To see this, assume M is the direct limit of the directed system
{Mη; kηζ : κ ≤ η < ζ < λ}, where λ = j(κ); and that we have, for each η, embeddings iη : V → Mη

and kη : Mη → M such that i = kη ◦ iη. Using the standard result for supercompact embeddings,
we can find, for each η, an embedding qη : Mη → N satisfying j = qη ◦ iη and qη |\ η+ = idη+ .
Using the universal property of direct limits, there must be k :M → N such that qη = k ◦ kη. We
have

k ◦ i = k ◦ kη ◦ iη
= qη ◦ iη
= j.

It remains to show that k is the identity on Vλ. But notice that if κ ≤ ξ < η < λ, then

ξ = qη(ξ)

= k(kη(ξ))

= k(ξ).

By inaccessibility of λ, the result follows. We have shown:

2.9 Proposition. Suppose j : V → N is an a.h. embedding with critical point κ and 〈Uη : κ ≤
η < j(κ)〉 is the coherent sequence derived from j. Then if i : V → M is the a.h. embedding

obtained from the direct limit of the ultrapowers by the Uη, κ ≤ η < j(κ), there is an embedding
k :M → N such that j = k ◦ i and k |\ Vj(κ) = idVj(κ) .

In working with the direct limit construction, we will avoid as far as possible the particulars
of the construction. Occasionally, however, these details will be necessary; we pause here to set up
the notation we will be using and to prove a few technical lemmas.
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Assuming we have the directed system 〈Mη; kηζ : κ ≤ η < ζ < λ〉 and the embeddings jη, we
carry out the construction of M and give the actual definitions of the kη and j. M is obtained
as a collection of equivalence classes [η, x] of members (η, x) of the disjoint union of the Mη; two
members (η, x), (ν, y) are equivalent iff there is ζ > η, γ such that kηζ(x) = kνζ(y). The embeddings
kη for each η are defined by kη(η, x) = [η, x]. The map j : V → M is then defined to be kη ◦ jη for
any η (and j is well-defined). A “membership” relation E is then defined on M as follows:

[η, x]E [ν, y]⇐⇒ ∃ζ > η, ν (kηζ(x) ∈ kνζ(y));

one verifies that E is well-defined. One shows that (M,E) is a well-founded model of ZFC, and
that the kη, and hence j, are elementary embeddings. As mentioned earlier, M is identified with
its transitive collapse. It is shown in [27] that j is in fact an a.h. embedding with critical point κ
and target λ.

2.10 Proposition. Given a directed system 〈Mη; kηζ : κ ≤ η < ζ < λ〉 with direct limit M and

embeddings kη :Mη → M as above, for each η, κ ≤ η < λ, kη |\ η + 1 = idη+1.

Proof. Given η, we prove by induction on α ≤ η that kη(α) = α, using the fact that kηζ |\ η+1 =
idη+1 whenever η < ζ < λ. By elementarity, kη(0) = 0. Assume kη(β) = β for all β < α. Since, by
elementarity again, kη(α) ≥ α, it suffices to show that

∀[ξ, x] ∈ M
(
[ξ, x]E [η, α] = kη(α) =⇒ ∃β < α ([ξ, x] = β)

)
.

Thus, suppose [ξ, x]E [η, α]. Then there is ζ > η, α such that kξζ(x) ∈ kηζ(α) = α. Thus, there is
β < α such that kξζ(x) = β = kηζ(β). Pulling back gives us [ξ, x] = [η, β]. Thus,

[ξ, x] = [η, β] = kη(β) = β,

as required.

An application of this proposition that we will need in Section 5 is the following:

2.11 Theorem. Suppose j : V → N is an a.h. embedding with target λ̃, and let 〈Uη : κ ≤ η < λ̃〉
be the coherent sequence derived from j. Suppose further that for some λ, κ < λ < λ̃, the restriction

〈Uη : κ ≤ η < λ〉 satisfies B(κ, λ). Let i : V → M denote the canonical a.h. embedding obtained

from 〈Uη : κ ≤ η < λ〉 (as described above). Then there is ẽ :M → N such that ẽ |\ Vλ = idVλ
and

j = ẽ ◦ i.

Proof. We begin by fixing notation: Let 〈M̃η; k̃ηζ : κ ≤ η < ζ < λ̃〉 be the usual directed system
of ultrapowers by 〈Uη : κ ≤ η < λ̃〉 with maps ĩη : V → M̃η such that k̃ηζ ◦ ĩη = ĩζ , whenever
η < ζ < λ̃. Let M̃ denote (the transitive collapse of) the direct limit of this system with maps
k̃η : M̃η → M̃. Let ĩ : V → M̃ be defined by ĩ = k̃η ◦ ĩη, for any η.

For κ ≤ η ≤ ζ < λ, let Mη = M̃η, iη = ĩη, and kηζ = k̃ηζ . Let M be the direct limit of the
system 〈Mη; kηζ : κ ≤ η < ζ < λ〉, with maps kη : Mη → M . Let i : V → M be defined by
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i = kζ ◦ iζ for any ζ; i is an a.h. embedding because the coherent sequence from which it was
defined satisfies B(κ, λ).

V V V

iη
❄

iζ
❄ �

��
✠
i

Mη
kηζ✲ Mζ

kζ✲ M

✁
✁
✁
✁
✁
✁
✁✁

☛

ĩλ

❄

ĩ

u
❄

❅
❅❅❘e

M̃η
k̃ηζ✲ M̃ζ

k̃ζλ✲ M̃λ
k̃λ✲ M̃

By the universal property of direct limits, there is an elementary embedding u :M → M̃λ such
that u ◦ kζ = k̃ζλ whenever κ ≤ ζ < λ. Now u ◦ i = ĩλ, since

ĩλ = k̃ζλ ◦ ĩζ
= k̃ζλ ◦ iζ
= u ◦ kζ ◦ iζ
= u ◦ i.

Let e = k̃λ ◦ u. Notice that

(2.1) ĩ = e ◦ i

(since ĩ = k̃λ ◦ ĩλ = k̃λ ◦ u ◦ i = e ◦ i.)
We prove that e |\ ζ +1 = idζ+1 whenever κ ≤ ζ < λ: By Proposition 2.10, k̃ζ |\ ζ +1 = idζ+1.

For κ ≤ η ≤ ζ,

η = k̃ζλ(η) = u(k̃ζ(η)) = u(η),

and so u |\ ζ + 1 = idζ+1. Finally, for κ ≤ η ≤ ζ, η = k̃λ(u(η)) = e(η). Now, since λ is inaccessible,
it follows that e |\ Vλ0 = idVλ0

, whenever κ ≤ λ0 < λ; thus,

e |\ Vλ = idVλ
.

We have obtained an e : M → M̃ that is the identity on Vλ and for which (2.1) holds.
To complete the proof, we use Proposition 2.9 to obtain k̃ : M̃ → N such that j = k̃ ◦ ĩ and
k̃ |\ Vλ̃ = idVλ̃

. Then ẽ = k̃ ◦ e is the required embedding.

Our final proposition in this sub-section will be useful for computing the size of i(Vγ) for
γ > i(κ), where i is an a.h. embedding obtained from a coherent sequence of normal ultrafilters
(see Proposition 2.28).
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2.12 Proposition. Suppose κ is almost huge with target λ. Suppose γ > λ is a regular cardinal.

Then j(γ) = sup{j(α) : α < γ}.
Proof. Note that for each η,

j(γ) = kη(jη(γ))

= [η, jη(γ)].

We show that for each x below j(γ) there is, by regularity of γ, an α < γ such that x < j(α); that
is, we show that whenever [ξ, x]E[η, jη(γ)], there is α < γ such that

[ξ, x]E [η, jη(α)].

Now [ξ, x]E [η, jη(γ)] implies there is ζ > ξ, η such that

kξζ(x) ∈ kηζ(jη(γ)) = jζ(γ).

Thus, as an element of Mζ , kξζ(x) is represented by a function f : Pκζ → γ; because γ is regular
and > λ, there is α < γ such that f : Pκζ → α, and so [f ]Uζ

∈ jζ(α). Thus, kξζ(x) ∈ kηζ(jη(α));
pulling back, [ξ, x]E [η, jη(α)], as required.

Super n-huge Cardinals

There is also an ultrafilter characterization of n-huge cardinals:

2.13 Proposition. Suppose κ is an uncountable cardinal. Then κ is n-huge if and only if there

is a κ-complete normal ultrafilter U over some P (λ) and cardinals κ = λ0 < λ1 < . . . < λn = λ so

that for each i < n,

{x ∈ P (λ) : ot(x ∩ λi+1) = λi} ∈ U.

Given an n-huge embedding j : V → N with cp(j) = κ, obtain the required U by putting
X ∈ U if and only if X ⊆ P (jn(κ)) and j′′jn(κ) ∈ j(X); U is called the normal ultrafilter over
P (jn(κ)) derived from j. Conversely, given U as in the proposition, form the ultrapower V P (λ)/U ;
then the canonical embedding is n-huge.

Suppose j : V → N is an n-huge embedding with critical point κ and let U be the normal
ultrafilter over P (jn(κ)) derived from j. Form the ultrapower and let M denote the transitive
collapse and i : V → M the canonical embedding. One shows that for all α ≤ jn(κ), α is represented
in M by the function x �→ ot (x∩α). Then, as usual, there is an embedding k :M → N defined by

k[g]U = j(g)[j′′jn(κ)],

satisfying
j = k ◦ i; k |\ jn(κ) = idjn(κ).

I3, I1, I0, and Inconsistency

In [21], Kunen showed that the natural “limit” of large cardinal axioms described by elementary
embeddings V → M , with increasingly inclusive M , is inconsistent with ZFC:
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2.14 Theorem [21], Kunen’s Theorem. There is no elementary embedding V → V other than the

identity.

His proof also shows the following:

2.15 Corollary (Kunen). There is no elementary embedding of the form j : Vλ+2 → Vλ+2 other

than the identity.

At this time, the strongest hypothesis not known to be inconsistent (and that has received
significant attention) is Woodin’s I0 (as in Definition 2.1(9) above). It is well known that

I0 =⇒ I1 =⇒ I3

and that the implications are strong (cf. [18]).

Properties of Large Cardinals

Elementary embeddings can be combined not only by ordinary composition, but by direct
application as well; we list some facts that we will need concerning these two ways of combining
embeddings:

2.16 Definition. (j · j). Suppose j : V → N is an elementary embedding with critical point κ.
We define j · j by

j · j =
⋃

α∈ON
j(j |\ Vα).

V j✲ N

❅
❅

❅❘
j◦j jj

❄

❅
❅

❅❘
jj◦jj

N1
✲

jj·jj N2

As in the diagram,

N1 = (j · j)(N)
N2 = [(j · j) · (j · j)](N1)

= (j · j)[(j · j)(N)]
As a simple application of this notion, we can complete the proof of Proposition 2.7(1): Given

an extender E with critical point κ and support Vλ, we wish to obtain a λ-strong embedding i.
As we observed earlier, iE(κ) ≥ λ. In case iE(κ) > λ, we set i = iE . If iE(κ) = λ, we set
i = (iE · iE) ◦ iE . Noting that cp(iE · iE) = iE(κ) = λ, the result follows.
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If U is the normal ultrafilter over κ derived from j, then write

U j = j(U)

= {X ⊂ j(κ) : j(κ) ∈ (j · j)(X)}
U jj = (j · j)[j(U)]

= {X ⊂ j2(κ) : j2(κ) ∈ [(j · j) · (j · j)](X)}.

U j will be called the normal ultrafilter over j(κ) derived from j · j in N . Likewise, U jj will be
called the normal ultrafilter over j2(κ) derived from (j · j) · (j · j) in N1.

2.17 Proposition.

(1) (j · j) ◦ j = j ◦ j.
(2) [(j · j) · (j · j)] ◦ (j · j) = (j · j) ◦ (j · j).
(3) In N , U j is a normal ultrafilter over j(κ).
(4) In N1, U

jj is a normal ultrafilter over j2(κ).
(5) If Vj(κ)+1 ⊂ N , then

V |=“U j is a normal ultrafilter over j(κ)”;

N |=“U jj is a normal ultrafilter over j2(κ)”.

Note that hypothesis of (5) holds if j is a huge embedding with critical point κ. Next, we
prove some facts concerning the relative strengths of the large cardinals that will concern us in
later sections. In [18], Kanamori proves the following theorem:

2.18 Theorem. Suppose κ is an infinite cardinal.

(1) If κ is strong or supercompact, then Vκ ≺2 V .

(2) If κ is inaccessible and there are arbitrarily large λ > κ for which λ is inaccessible and Vκ ≺ Vλ,

then Vκ ≺3 V.

2.19 Theorem. If κ is strong (supercompact) and Vκ |= “α is strong (supercompact)” , then α is
strong (supercompact).

Proof. Kanamori [18] shows that the statement “α is γ-supercompact”is ∆ZF
2 by noting that it

can be expressed both in the form ∃x [x = Vγ+5 ∧ φ(α, γ, x)] and ∀x [x = Vγ+5 → φ(α, γ, x)],
where φ is a Σ0 formula asserting the existence of a normal ultrafilter over Pαγ, with quantifiers
bound to x = Vγ+5. A similar observation (also mentioned in [18]) shows that “α is γ-strong” is
∆ZF

2 . From these observations, it follows that “α is not strong (not supercompact)” is ΣZF
2 and

therefore, by the previous theorem, relativizes down to Vκ. The result follows.

We now obtain similar results for some of the cardinals that are larger than supercompact.
These results will follow from some general observations about large cardinal properties that can be
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formulated as “globalized” local properties. Let us recall that a property P (x) is local if it has the
form ∃δ (Vδ |= ψ(x)). In [27] (see remarks following Definition 2.6 of that paper), it is proved that
local properties are precisely those that can be expressed by a Σ2 formula. Let us call a property
R(x) a globalized local property if it is of the form

∀y ∃β > rank(y) (Vβ |= ψ(x, y))

for some formula ψ. We show that a property is globalized local iff it can be expressed as a Π3

formula. It is clear that such properties are Π3. Conversely, if S(x) is a Π3 property given by
∀y ∃z Q(x, y, z) where Q is Π1, it is easy to see that

S(x)⇐⇒ ∀y ∃β > rank(y)
[
Vβ |= σ ∧ ∃z Q(x, y, z)],

where σ is a beth fixed point sentence (recall the beginning of Section 2). Such large cardinal
properties as globally superstrong, super-almost-huge, extendible, and superhuge are globalized
local. The next proposition allows us to do for these large cardinals what was done for strong and
supercompact in Theorems 2.18 and 2.19.

2.20 Proposition. Suppose R(x) is a globalized local property. Suppose κ is inaccessible and
there are arbitrarily large λ > κ such that λ is inaccessible and Vκ ≺ Vλ. Then

[Vκ |= R(α)] =⇒ R(α).

Proof. Since ¬R(α) is given by a Σ3 formula, the result follows from Theorem 2.19(2).

2.21 Corollary. Suppose α < κ are infinite cardinals such that

(i) κ is globally superstrong (extendible, super-almost-huge, superhuge);

(ii) Vκ |= “α is globally superstrong (extendible, super-almost-huge, superhuge)”.
Then α is globally superstrong (extendible, super-almost-huge, superhuge).

Proof. Each of these large cardinal properties satisfies the hypothesis of Proposition 2.20.

2.22 Theorem. Let κ be an infinite cardinal.

(1) Suppose κ is 2-huge and j : V → N is a 2-huge embedding with cp(j) = κ. Then Vj(κ) |=
“κ is superhuge”. Moreover, if κ is super 2-huge then κ is superhuge and if j is a 2-huge

embedding as above, N |= “κ is superhuge”.
(2) Suppose κ is huge and j : V → N is a huge embedding with cp(j) = κ. Then Vj(κ) |=
“κ is super-almost- huge”. Moreover, if κ is superhuge, then κ is super-almost-huge, and if j

is a huge embedding as above, N |= “κ is super-almost-huge”.
(3) Suppose κ is almost huge and j : V → N is an almost huge embedding with cp(j) = κ. Then

Vj(κ) |= “κ is extendible ”. Moreover, if κ is super-almost-huge, then κ is extendible, and if j

is an almost huge embedding as above, N |= “κ is extendible”.
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(4) Suppose κ is supercompact and there is an elementary embedding j : Vη → Vζ with cp(j) = κ

and κ < η < j(κ) < ζ. Then Vj(κ) |= “κ is supercompact ”. Moreover, if κ is extendible, then
κ is supercompact, and for every ξ, there are η > ξ and an elementary embedding j : Vη → Vζ

as above so that Vζ |= “κ is supercompact.”
(5) Suppose κ is superstrong and j : V → N is a superstrong embedding with cp(j) = κ. Then

Vj(κ) |= “κ is strong”. Moreover, if κ is globally superstrong, then κ is strong, and if j is a

superstrong embedding as above, N |= “κ is strong”.
Proof of (1). The first part is proved in Theorem 5c of [4]. For the second part, note that for any
2-huge embedding j : V → N , if D is the normal ultrafilter over κ derived from j then D contains
the set S = {α < κ : Vκ |= “α is superhuge”}. Since κ is superhuge, by Corollary 2.21, each α ∈ S

is superhuge too. The result follows.

Proof of (2). Let U j be as in Definition 2.16 and let N1 = (j · j)(N). Let S = {β < j(κ) : Vj(κ) |=
“β is an a.h.target for κ”}. It suffices to show that S ∈ U j . Note that

(2.2) S ∈ U j ⇐⇒ V N
j2(κ) = V N1

j2(κ) |= “j(κ) is an a.h. target for κ.”

Because j |\ Vj(κ) ∈ N , a coherent sequence 〈Uη : κ ≤ η < λ〉 satisfying Barbanel’s Criterion
B(κ, λ) can be defined in V N

j2(κ). Note that B(κ, λ) is absolute for V N
j2(κ). This establishes (2.2) and

completes the proof of the first part.
For the second part, argue as in part (1) using Corollary 2.21.

Proof of (3). Let j : V → N be an almost-huge embedding, and let U j be the normal ultrafilter
over j(κ) derived from j · j in N (as in Definition 2.16). Note that U j is a j(κ)-complete filter in
V , and hence is uniform. Let ψ(α, β, γ) be the formula

∃σ < β∀η∃ξ < γ∃i[σ < η < β =⇒ cp(i) = α ∧ i(α) > η∧
“i : Vη → Vξ is an elementary embedding”

]
.

Let S = {β < j(κ) : ψ(κ, β, j(κ))}. Note that ψ(κ, β, j(κ)) is absolute for N , so S ∈ N . To finish
the proof of the first part, it suffices to prove that S is unbounded in j(κ); since U j is a uniform
filter in V , it suffices to prove S ∈ U j :

S ∈ U j ⇐⇒ j(κ) ∈ (j · j)(S)
⇐⇒ N1 |= ψ(κ, j(κ), j2(κ))

⇐⇒ N |= ψ(κ, j(κ), j2(κ)).

By almost-hugeness, for all η, κ < η < j(κ), we have j |\ Vη ∈ N . Thus, we can verify “N |=
ψ(κ, j(κ), j2(κ))” by setting σ = κ and for each η < j(κ), ξ = j(η) and i = j |\ Vη.

For the second part, note that a super-almost-huge cardinal is supercompact. Also, if λ > κ

is supercompact and κ is extendible, then Vλ |= “κ is extendible”; this can be proved by using the
fact that “κ is not extendible” is ΣZF

3 (see [18, Ex. 23.9(a)]) and applying Theorem 2.18. Thus,
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we can argue as in [18, 24.13] as follows: Given any ordinal η, let j : V → N be an almost huge
embedding with cp(j) = κ and j(κ) > η. Then j |\ Vκ+η ∈ N and so N |= “κ is η-extendible”.
As N |= “j(κ) is supercompact”, by the above remark, “κ is η-extendible” holds in V N

j(κ) = Vj(κ).
Thus κ is really η- extendible; since η was arbitrary, it follows that κ is extendible.

Finally, to show that for any super-almost-huge embedding j : V → N, N |= “κ is extendible”,
argue as in part (1), using Corollary 2.21.

Proof of (4). The first part is proven in [18, Proposition 23.8]. The fact that every extendible
is supercompact is proven in [18, Proposition 23.6]. To complete the proof, note that since κ is
extendible, there is a proper class of inaccessibles; for each inaccessible η > κ let j : Vη → Vζ be an
elementary embedding such that cp(j)= κ and η < j(κ) < ζ. Let D = {X ⊂ κ : κ ∈ j(X)} and
observe that if S = {α < κ : Vκ |= “α is supercompact”} then S ∈ D. Since η is inaccessible,

Vη |= “κ is supercompact” ∧ ∀α ∈ S (Vκ |= “α is supercompact”).

Now use Theorem 2.19 inside Vη to conclude that, for each α ∈ S, Vη |= “α is supercompact”. It
follows from elementarity that

Vζ |= “κ is supercompact”.
Proof of (5). Given a superstrong embedding j : V → N and λ < j(κ), let E be the extender
with support Vλ+1 derived from j; E ∈ Vj(κ) is a witness to λ-strongness in Vj(κ) (see the remarks
preceding Proposition 2.7).

If κ is globally superstrong, it is clearly strong as well. Argue as in (1), using Theorem 2.19,
to conclude that in N , κ is strong.

Laver Sequences

2.23 Definition A Laver sequence is a function g : κ → Vκ such that for each x and each λ ≥
max(κ, |TC(x)|), there is a normal ultrafilter U over Pκλ such that x = iU (g)(κ).

Laver introduced the concept of a Laver sequence in [22]; he proves such sequences exist when-
ever κ is supercompact. (In the literature, the condition “λ ≥ max(κ, |TC(x)|)” in Definition 2.23
is sometimes abbreviated to “λ ≥ |TC(x)|”; we note here, however, that this abbreviation is tech-
nically inaccurate since there is no nontrivial normal ultrafilter over Pκα when α < κ.) In [14],
Shelah and Gitik note without proof that an argument similar to Laver’s can be carried out to
establish the existence of an analogue to Laver sequences for strong cardinals, replacing normal
ultrafilters over index sets of the form Pκλ by (κ, λ) ultrafilters. By now, the notion of extenders
has become more popular (and somewhat more useful) than (κ, λ) ultrafilters (cf. [1], [24]); we
give a definition of Laver sequences for strong cardinals using extenders and in Theorem 2.30(2)
provide a proof that strong cardinals always admit this type of Laver sequence.

2.24 Definition Strong Laver Sequences A strong Laver sequence is a function g : κ → Vκ such
that for each x and each λ > max(κ, rank(x)), there is an extender E with critical point κ and
support Vλ such that x = iE(g)(κ).
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Before proving the existence of strong Laver sequences, we extract a couple of useful lemmas
implicit in Laver’s original proof that will be useful for the proof and for generalizations later.

We shall say that, for any transitive class M (possibly proper) and any a ∈ M , M is a-closed
if, for each function f , f ∈ M whenever there is y ∈ M such that f : a → y.

2.25 Lemma. Suppose M is transitive, closed under composition of functions and under inverses
of bijections. Suppose a, b ∈ M and |a| = |b|. Then M is a-closed iff M is b-closed.

Proof. By symmetry, it suffices to prove just one direction. Let u : a → b be a bijection and
assume M is a-closed. Because of M ’s closure properties, both u and u−1 must be elements of M .
Given h : b → z with z ∈ M , we show h ∈ M . Let w = h ◦ u : a → z. By a-closure again, w ∈ M .
Since M is closed under composition of functions, h = w ◦ u−1 ∈ M .

b h ✲ z b h ✲ z

❅
❅

❅



u

�
�

�✒
w

❅
❅

❅❘
u−1

�
�

�✒
w

a a

A typical application of Lemma 2.25 arises when, for some λ, a = Vλ and b = |Vλ|. Note that
the assertion

(2.3) λM ⊂ M

generally asserts more than “M is λ-closed”, so when (2.3) is needed, we will be explicit about it.

2.26 Lemma. Suppose V̄ ,M,N are transitive classes (possibly proper), where V̄ is either V itself

or some Vβ . Let κ < λ be ordinals in V̄ and suppose g : κ → Vκ ∈ V̄ . Suppose the following is a

commutative diagram of elementary embeddings

V̄ j ✲ N

i

❄✑
✑

✑
✑

✑
✑✸

k

M

so that cp(j) = κ = cp(i). Let x = j(g)(κ). Suppose further that one of I, II holds, where

(I) (a) k |\ (λ+ 1) = idλ+1;
(b) |TC(x)| ≤ λ; and
(c) M is λ-closed.
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(II) (a) k |\ Vλ ∩M = idVλ∩M ;
(b) rank(x) < λ.

Then,
x ∈ M, k(x) = x, and x = i(g)(κ).

Remarks.

(1) Note that in (I) the computation of |TC(x)| is in V and in (II), rank(x) is computed in V .
(2) Condition (I) actually implies k |\ λ+ = idλ+ . This follows from condition (Ic) (which shows

that λ+ = (λ+)M ) and the easily proved fact that the critical point of k must be a cardinal in
M . On the other hand, this statement is not generally true assuming condition (II) instead,
since it is possible in that case for cp(k) = λ. (An example of this situation occurs when κ

is almost huge with two targets λ, λ̃, as described in the hypothesis of Theorem 2.11. In the
notation of that theorem, Lemma 2.26(II) holds for ẽ, λ and cp(ẽ) = λ. The hypotheses of
Theorem 2.11 are shown in Theorem 5.20 to follow from the existence of a huge cardinal.)

Proof. Begin by setting y = i(g)(κ) ∈ M and noting that since k(κ) = κ, k(y) = x. Also observe
that λ ∈ M since λ ≤ i(λ) ∈ M ; likewise λ ∈ N .

Assuming (I), we observe first that the terms TC({y}), TC(y) are defined in (and absolute
for) M ; this follows because

y = i(g)(κ) ∈ i(Vκ) = V M
i(κ) = HM

i(κ)

where, for each cardinal ν, Hν is the set of all w for which |TC(w)| < ν.
We show by ∈-induction (in V ) that for all z ∈ TC({y}), k(z) = z. Assume k(u) = u for all

u ∈ z and let f : λ → z be a surjection. Since z ∈ M , by (Ic), f ∈ M . Then k(dom f) = dom f

and k(f)(β) = k[f(β)] = f(β) by induction hypothesis. Thus, k(f) = f , and so

k(z) = k(range(f)) = range(k(f)) = range(f) = z.

Thus, k(y) = y. We have therefore shown that x = k(y) = y = i(g)(κ) ∈ M.

To obtain the result assuming (II), note that N |= rank(x) < λ (since x = j(g)(κ) ∈ N and
x ∈ Vλ by (II)). Now by elementarity of k, M |= rank(y) < λ. We have, therefore, using (IIa),
x = k(y) = y = i(g)(κ) ∈ M , as required.

Notice that the definition of Laver sequences for supercompact cardinals involves the notion
of transitive closure whereas the parallel definition for strong cardinals uses ranks. In Section 4
(Definition 4.14) when we give a generalized definition for Laver sequences, we will use ranks instead
of transitive closures; arguments involving this definition will therefore often invoke Lemma 2.26(II).
On the other hand, we will have occasion to use Lemma 2.26(I) in arguments concerning the
standard Laver sequences for supercompact cardinals.

The following observation will be useful when we need to compare the result of performing an
ultrapower construction in V with that of doing the same construction in some inner model (or
transitive set) N .
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2.27 Lemma. Suppose N is either an inner model of ZFC or a transitive set satisfying ZFC −
Replacement + ∀x∃α (x ∈ Vα).

(1) Suppose U is a normal ultrafilter over Pκλ, U ∈ N , and PκλN ⊂ N. Then whenever h : Pκλ →
N , h represents the same element in V Pκλ/U as in

(
V Pκλ/U

)N
.

(2) Suppose E is an extender with critical point κ and support Y , E and Y are in N , and κN ⊂ N .

Then for each a ∈ <ω[Y ] and each F : aVκ → N , F represents the same element in Ult(V,E)
as it does in

(
Ult(V,E))

)N
.

(3) Suppose U is a normal ultrafilter over P (λ) so that {X ∈ P (λ) : ot(X) = κ} ∈ U , U ∈ N , and
P (λ)N ⊂ N. Then whenever h : P (λ) → N , h represents the same element in V P (λ)/U as in(
V P (λ)/U

)N
.

Proof. The proofs of each case are similar; we prove (2) and leave the proofs of (1) and (3) to
the reader. To prove (2), first observe that the elements of Ult(V,E) represented by a function
F : aVκ → N form a transitive class, so we may proceed by ∈-induction over this class. Given
F : aVκ → N , notice that for each G : bVκ → N ,

(2.4) Ult(V,E) |= [G]E ∈ [F ]E iff
(
Ult(V,E) |= [G]E ∈ [F ]E

)N
since the statement Ult(V,E) |= [G]E ∈ [F ]E is equivalent to

∀c ∈ <ω[Y ]
[
(c ⊇ a ∪ b) =⇒

(
Ec

({h : G(h |\ b) ∈ F (h |\ a) }) = 1)]
,

which is absolute for N and V . By the induction hypothesis, the conclusion of (2) holds for all
G : bVκ → N for which [G]E ∈ [F ]E . It now follows from (2.4) that [F ]E and [F ]NE have exactly
the same elements.

The next proposition tells us that when we form various ultrapowers with suitably large Vγ ’s
instead of with V , the resulting universes look the same below Vγ , and we can get a definable upper
bound on the codomain of the canonical embeddings.

2.28 Proposition. Suppose κ < λ < β ≤ γ < ρ, where γ is a regular cardinal and ρ is a beth

fixed point. Suppose i and ĩ are elementary embeddings with critical point κ. Also, suppose one

of the following conditions holds:

(A) U is a normal ultrafilter over Pκλ and γ > 2λ
<κ

; ĩ : V → V Pκλ/U ∼= M̃ and i : Vγ →
V Pκλ
γ /U ∼=M are the canonical embeddings.

(B) E is an extender with critical point κ and support Vλ, and ĩ : V → Ult(V,E) ∼= M̃ and

i : Vγ → Ult(Vγ , E) ∼=M are the canonical embeddings.

(C) 〈Uη : κ ≤ η < λ〉 is a coherent sequence of normal ultrafilters satisfying B(κ, λ), M̃ is the

direct limit of the system 〈M̃η; k̃ηζ : κ ≤ η < ζ < λ〉, where M̃η
∼= V Pκη/Uη, and M is the

direct limit of the system 〈Mη; kηζ : κ ≤ η < ζ < λ〉, where Mη
∼= V Pκη

γ /Uη, and ĩ : V → M̃ ,

i : Vγ → M are the respective canonical embeddings.
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(D) γ > 22
λ

, U is a normal ultrafilter over P (λ) containing the set {X ∈ P (λ) : ot(X) = κ}, and
ĩ : V → V P (λ)/U ∼= M̃ , i : Vγ → V

P (λ)
γ /U are the canonical embeddings.

Then

(1) ĩ |\ Vβ = i |\ Vβ ;
(2) ĩ(Vβ) = i(Vβ) if β < γ, and ĩ(Vγ) =M ;

(3) both ĩ(Vβ) and ĩ |\ Vβ are members of Vρ.

Proof. First we consider the conditions (A), (B), and (D). We first observe that in each of these
cases,

(2.5) ĩ(γ) = sup{̃i(α) : α < γ};

to prove this, let [f ] ∈ ĩ(γ), where f : I → γ (and I is either Pκλ, P (λ), or aVκ for some a ∈ [Vλ]<ω).
By regularity of γ and its size relative to I, there is α < γ such that f : I → α, whence [f ] < ĩ(α),
as required.

Note that since γ is regular and large enough, Vγ satisfies the hypotheses for the class N in
Lemma 2.27(1)-(3). The conclusion of Lemma 2.27 gives us (1) and the first part of (2) of the
present theorem immediately, for β < γ. To complete the proof of (2), use (2.5) to observe that

ĩ(Vγ) = V M̃
ĩ(γ)

=
⋃

α<ĩ(γ)

V M̃
α

=
⋃

α<ĩ(γ)

V M
α

=M.

Part (3) requires a computation. Assuming condition (A),

max
(
rank(i |\ Vβ), rank(i(Vβ))

)
< i(β) + ω

< (βλ<κ

)+ + ω

< ρ.

For (B),
max

(
rank(i |\ Vβ), rank(i(Vβ))

)
< i(β) + ω

<
(|∑

|Vλ|
βκ|)+ + ω

< ρ.

For (D),
max

(
rank(i |\ Vβ), rank(i(Vβ))

)
< i(β) + ω

< (β2λ

)+ + ω

< ρ.
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Finally, we consider the condition (C). We will make use of the details of the direct limit construc-
tion, as described earlier in this section. We review the relevant notation for the direct limit M̃ ;
the parallel notation will be understood for M . M̃ is obtained as a collection of equivalence classes
[η, x]; there are embeddings k̃η for each η defined by k̃η(x) = [η, x]. The embedding ĩ : V → M̃ is
defined by k̃η ◦ ĩη for any η.

By (A), for each η, ĩη |\ Vγ = iη |\ Vγ and ĩη(Vγ) = Mη; from this, it follows that, for
κ ≤ η < ζ < λ,

(2.6) k̃ηζ |\ Mη = kηζ |\ Mη.

We wish to show that for all x ∈ Mη, k̃η(x) = kη(x), i.e., [η, x]M̃ = [η, x]M . It suffices to show that
for all ξ and all y ∈ M̃ξ, (ξ, y) ∼M̃ (η, x) if and only if y ∈ Mξ and (ξ, y) ∼M (η, x). If y ∈ M̃ξ and
(ξ, y) ∼M̃ (η, x), then there is ζ > ξ, η such that k̃ξζ(y) = k̃ηζ(x) = kηζ(x) ∈ Mζ . But k̃ξζ(y) ∈ Mζ

implies y ∈ Mξ by (2.6). Thus (ξ, y) ∼M (η, x). The proof of the converse is similar but easier.
Thus k̃η |\ Mη = kη.

Now let x ∈ Vγ . Then

ĩ(x) = k̃η ◦ ĩη(x) = kη ◦ iη(x) = i(x),

and so ĩ |\ Vγ = i.
To complete the proof of (2), we can argue as in the other cases, using Proposition 2.12, that

ĩ(Vγ) =
⋃

α<ĩ(γ) i(Vα) =M .
To prove (3) for this case, we perform the following computation:

max
(
rank(i |\ Vβ), rank(i(Vβ))

)
< i(β) + ω

<
∑

κ≤η<λ

(βη<κ

)+ + ω

< ρ,

and we are done.

The next proposition applies Lemma 2.27 and will be used in Section 5.

2.29 Proposition. Suppose κ is a strong cardinal, α < κ, and g : α → Vα is a function.

(1) If g is not a (supercompact) Laver sequence, then there are x ∈ Vκ and λ < κ with λ ≥
max(α, |TC(x)|), such that for all normal ultrafilters U over Pαλ, iU (g)(α) = x.

(2) If g is not a strong Laver sequence, then there are x ∈ Vκ and λ < κ with λ ≥ max(α, rank(x)),
such that for all extenders E with critical point α and support Vλ, iE(g)(α) = x.

Proof. The method of proof in each case is similar; both cases make use of Lemma 2.27. We
prove (2) and leave the proof of (1) to the reader. Since g is not strong Laver at α, there is a
set x and a λ > max(α, rank(x)) such that for each extender E with critical point α and support
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Vλ, x = iE(g)(α). Let j : V → N be an elementary embedding with critical point κ, j(κ) > λ+

and Vλ+ ⊂ N. Now Vλ, together with every extender with critical point α and support Vλ, belong
to N . By Lemma 2.27, for all such extenders E, iE(g)(α) = iNE (g)(α); thus the following holds in
N :

∃x∃λ < j(κ) [max(α, rank(x)) < λ and for all extenders E with critical

point α and support Vλ, iE(g)(α) = x].

By elementarity of j, the following is true:

∃x∃λ < κ [max(α, rank(x)) < λ and for all extenders E with critical

point α and support Vλ, iE(g)(α) = x],

as required.

The proof of Lemma 2.29 shows that we can pick λ to be as large as we like, below κ.

2.30 Theorem (Laver [22]). Suppose κ is an infinite cardinal.

(1) If κ is supercompact, there is a Laver sequence at κ.

(2) If κ is strong, there is a strong Laver sequence at κ.

Mν

✟✟✟✟✟✟✟✯
iν

�
�

�✒
k̂

V
iÊ✲ Ult

✻

k
❍❍❍❍❍❍❍❥

i

❅
❅

❅




Mκ

Proof. Part (1) was proved in [22]. For (2), we proceed as in [22] using extenders instead of normal
ultrafilters as follows. Assume the theorem is false. For each f : κ → Vκ, let λf be the least ordinal
such that for some set x with max(κ, rank(x)) < λf , iE(f)(κ) = x for any extender E with critical
point κ and support Vλf

. Let ν be a regular cardinal greater than |Vλf
| for all λf .

Let iν : V → Mν be an elementary embedding with critical point κ, iν(κ) > ν and Vν ⊆ Mν .

Let φ(g, δ) denote the following formula:

“There exists a cardinal α with g : α → Vα and δ is the least ordinal for which
there is a set x with max(α, rank(x)) < δ such that for all extenders E with
critical point κ and support Vδ, iE(g)(κ) = x.”

Claim. For all f ∈ κVκ, Mν |= φ(f, λf ).

Proof of Claim. We have chosen ν large enough to guarantee the absoluteness in Mν of all
relevant notions. It suffices to show that, for any extender E with critical point κ and support Vλf

,

(2.7) iMν

E (f)(κ) = iE(f)(κ).
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Since f : κ → Vκ ∈ Mν , it follows from Lemma 2.27 that

iMν

E (f) = [caf ]
Mν

E = [caf ]E = iE(f).

Now let Uκ = {B ⊆ κ | κ ∈ iν(B)}, and let i : V → Mκ
∼= V κ/Uκ be the canonical elementary

embedding. As usual (cf. [17]), defining k :Mκ → Mν by k([f ]) = iν(f)(κ) makes k an elementary
embedding such that k ◦ i = iν .

Now
Mν |= (∀f : κ → Vκ

) (∃λ < iν(κ)
)
φ(f, λ).

Since iν = k ◦ i, k(κ) = κ, and k(Vκ) = Vκ,

Mκ |= (∀f : κ → Vκ

) (∃λ < i(κ)
)
φ(f, λ).

By VLos̀’ Theorem, there is D ∈ Uκ such that for all α ∈ D,

(∀f : α → Vα

) (∃λ < κ
)
φ(f, λ).

Define g : κ → Vκ recursively as follows: Assuming g |\ α has been defined, put g(α) = 0,
unless α ∈ D and g |\ α : α → Vα, in which case let g(α) be a witness for φ(g |\ α, λg|\α).

Applying iν to the formula

∀α ∈ D
(
“g(α) witnesses φ(g |\ α, λg|\α)”

)
,

and noting that κ ∈ iν(D) and iν(g) |\ κ = g, we obtain

Mν |= “x witnesses φ(g, λg), ”

where x = iν(g)(κ). Using (2.7) as in the proof of the claim, it follows that

(2.8) iν(g)(κ) = iE(g)(κ)

for any extender E with critical point κ and support Vλg
. We obtain a contradiction by showing

that the definition of g gives rise to an extender Ê that violates (2.8).
Let Ê denote the extender derived from iν with support Vλg

, let iÊ : V → Ult(V, Ê) be
the canonical embedding and let k̂ : Ult(V, Ê) → Mν be defined as in Proposition 2.5. Since
k̂ |\ Vλg

= idVλg
and rank(x) < λg, we can use Lemma 2.26(II) to conclude that x = iÊ(g)(κ); this

is a contradiction.

We now give a kind of ultrafilter characterization of Laver sequences and use it to show that
the statement “f is a Laver sequence at κ” is ΠZFC

3 . This syntactic classification will be useful for
proving reflection properties of Laver sequences in Section 5.

We begin with an observation. Suppose g : κ → Vκ, λ > κ, h : Pκλ → V,U is a normal
ultrafilter over Pκλ, and, in the (transitive collapse of the) ultrapower Mλ by U , we let x = [h]U .
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Let iU : V → Mλ be the canonical embedding. Recall that the function tκ : Pκλ → V : P �→
ot(P ∩κ) represents κ in Mλ (see the subsection Supercompact Cardinals). We have the following
equivalences:

iU (g)(κ) = x ⇐⇒ Mλ |= [cg]([tκ]) = [h](∗)sc
⇐⇒ {P ∈ Pκλ : g(ot(P ∩ κ) = h(P )} ∈ U

⇐⇒ {P ∈ Pκλ : g(P ∩ κ) = h(P )} ∈ U.

(The last equivalence uses the fact that {P : ot(P ∩ κ) = P ∩ κ} ∈ U , which follows from the fact
that i′′Uκ = κ.)

2.31 Lemma. Suppose κ is supercompact. Then for each x and each λ ≥ max(κ, |TC(x)|), there
exist a normal ultrafilter U over Pκλ and a function h : Pκλ → Vκ such that h represents x in the

ultrapower by U .

Proof. The point is to show that it is always possible to find a representing h for x having range
in Vκ. By supercompactness, let g : κ → Vκ be a Laver function and let U be a normal ultrafilter
over Pκλ such that x = iU (g)(κ). Let ĥ represent x in the ultrapower. Then by (∗)sc, there is a
U -measure 1 set of P ∈ Pκλ such that ĥ(P ) ∈ Vκ. Now define h : Pκλ → Vκ so that it agrees with
ĥ on a U -measure 1 set.

For the next theorem, we need the following formulas Qsc(g, κ, λ, x) and Q′
sc(g, κ, λ, x):

Qsc(g, κ, λ, x): λ ≥ max(κ, |TC(x)|) implies that there exist a normal ultrafilter U

over Pκλ and a function h : Pκλ → Vκ such that {P : g(P ∩ κ) =
h(P )} ∈ U and, if M denotes the transitive collapse of the ultrapower
V Pκλ/U , then in M , x = [h]U .

Q′
sc(g, κ, λ, x): λ ≥ max(κ, |TC(x)|) implies that there exist a normal ultrafilter U

over Pκλ and a function h : Pκλ → Vκ such that {P : g(P ∩ κ) =
h(P )} ∈ U and, if N denotes the transitive collapse of the ultrapower
V Pκλ
γ /U , where γ > 2λ

<κ

is a regular cardinal, then x = [h]U .

2.32 Theorem. Suppose κ is an infinite cardinal and g : κ → Vκ is a function. Then the following

are equivalent:

(1) g is Laver at κ;

(2) ∀x∀λQsc(g, κ, λ, x);
(3) ∀x∀λQ′

sc(g, κ, λ, x)

Proof. (1) ⇔ (2) follows from (∗)sc. To prove (2) ⇔ (3), use Lemma 2.27(1), noting that Vγ and
h : Pκλ → Vκ satisfy the hypotheses of that proposition.
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2.33 Corollary. The statement “g is a Laver function at κ” is ΠZFC
3 .

Proof. In light of the last theorem, it is easy to see that, in ZFC, Q′
sc(g, κ, λ, x) is equivalent to

the following:

∃Y ∃Z ∃γ ∃β [
Y = Vγ ∧Z = P (λ) ∧ “β and γ are regular cardinals” ∧ λ < |Z| < β < γ ∧

∃U,X, h, t, π,M ∈ Y σ[U,X, h, t, π,M, κ, λ, β, x]
]
,

where σ says that U is a normal ultrafilter over Pκλ, X is the ultrapower of V Pκλ
β by U , π : X → M

is the collapsing isomorphism, t = [h]U , π(t) = x, and {P : g(P ∩ κ) = h(P )} ∈ U . Note that
γ has been chosen large enough so that all variables in σ can be bound to Y = Vγ . Because the
formulas “Y = Vγ”, “Z = P (λ)” and “β, γ are regular cardinals” are ΠZFC

1 , it is easy to see that
the displayed formula is indeed ΣZFC

2 ; prefixing the formula with the universal quantifiers ‘∀x∀λ’
turns it into a ΠZFC

3 formula, as required.

Note that we have not claimed the formula in the proof is ΠZF
3 since the Axiom of Choice is

used in obtaining an h from each triple (x, λ, U).

2.34 Remark. The results just presented for supercompact cardinals carry over to strong cardinals,
and, to a lesser extent, to super-almost-huge and superhuge cardinals. These results can be used to
show that Laver sequences corresponding to each of these large cardinals (to be defined in Section 4)
are also ΠZFC

3 . This syntactic result will be obtained in a somewhat slicker, less laborious way in
Section 5, so the details below can be safely skipped by the reader who wants to move quickly to
the main results.

(1) Strong cardinals. First, we have the following analogue to (∗)sc: Suppose g : κ → Vκ, λ >

κ,G : aVκ → V,E is an extender with critical point κ and support Vλ+1, and, in the ultrapower
Ult(V,E) we let x = [G]E . Let iE be the canonical embedding. Recall that for each b ∈ <ω[Vλ+1],
with κ ∈ b, κ is represented by Hb

κ : h �→ h(κ) in Ult(V,E). We have, for all a, b, c, d ∈ <ω[Vλ+1],
with κ ∈ b and a ∪ b ∪ c ⊆ d :

iE(g)(κ) = x ⇐⇒ Ult(V,E) |= [cag ]([Hb
κ]) = [G](∗)str

⇐⇒ Ed

(
{h : g(h(κ)) = G(h |\ c)}

)
= 1.

The analogue to Lemma 2.31 holds. The analogue to Qsc is the following:

Qstr(g, κ, λ, x): λ > max(κ, rank(x)) implies that there exist an extender E with critical
point κ and support Vλ+1 and a function G : aVκ → Vκ such that, for all
c, d ∈ <ωVκ with κ ∈ d and c ⊆ d, Ed

(
{h : g(h(κ)) = G(h |\ c)}

)
= 1,

and x = [G]E .

As in the supercompact case, we let Q′
str(g, κ, λ, x) be the same as Qstr(g, κ, λ, x) except that

we consider the ultrapower Ult(Vγ , E) where γ > λ is a regular cardinal. With these definitions,
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the analogue to Theorem 2.32 can be proven for strong Laver sequences using Lemma 2.27(2); it
follows that “g is a strong Laver function at κ” is ΠZFC

3 .

(2) Super-almost-huge cardinals. Although we have not attempted to give a definition of a
Laver sequence for these cardinals, we can still carry out most of the details of the work above for
later use. (The interested reader can verify, after reading Definition 4.14, that the corresponding
notion of a Laver sequence turns out to be ΠZFC

3 ; this is proven in Section 5 using other methods.)
We again begin by formulating an analogue to (∗)sc: Suppose g : κ → Vκ, λ > κ is inaccessible,
〈Uη : κ ≤ η < λ〉 is a coherent sequence satisfying B(κ, λ), and x is a set and η is an ordinal with
max(κ, |Vrank(x)|) < η < λ. Let 〈Mη; kηζ : κ ≤ η < ζ < λ〉 be the usual sequence of ultrapowers
over the Uη with canonical embeddings iη; letM be the direct limit of theMη; let kη :Mη → M be
the usual embeddings for which kη = kζ ◦kηζ for η < ζ; and let i : V → M be defined by i = kη ◦ iη
for all η. Let h : Pκη → Vκ represent x in Mη. Then

i(g)(κ) = x ⇐⇒ (kη ◦ iη)(g)(κ) = x(∗)sah
⇐⇒ kη(iη(g)) kη(κ) = kη(x)

⇐⇒ iη(g)(κ) = x

⇐⇒ {P ∈ Pκη : g(P ∩ κ) = h(P )} ∈ Uη.

The analogue to Qsc is the following:

Qsah(g, κ, λ, x): λ > max(κ, rank(x)) and λ is inaccessible and there is a coherent sequence
〈Uη : κ ≤ η < λ〉 satisfying B(κ, λ) and an η such that max(κ, |Vrank(x)|) <
η < λ and a function h : Pκη → Vκ such that that {P : g(P∩κ) = h(P )} ∈
Uη and, if Mη denotes the transitive collapse of the ultrapower V Pκη/Uη,
then in Mη, x = [h]Uη

.

The formula Q′
sah(g, κ, λ, x) is obtained from Qsah(g, κ, λ, x) by replacing Mη by Nη where Nη

is the transitive collapse of the ultrapower V Pκη
γ /Uη and γ is a regular cardinal > λ. With this

definition, one proves as in Theorem 2.32, that for all g, κ, λ, x, Qsah(g, κ, λ, x) ⇐⇒ Q′
sah(g, κ, λ, x).

We note that the analogy with Theorem 2.32 stops here: a “super-almost-huge Laver sequence”
g at κ cannot be characterized by either of the formulas ∀x∀λQsah, ∀x∀λQ′

sah. This point will
become apparent in Section 4 when we give a more general definition of Laver sequences.

(3) Superhuge cardinals. As with super-almost-huge cardinals, the definition of superhuge
Laver sequences will remain undisclosed for the moment, but we can obtain some useful information
as in (2) above. The displayed equivalences (∗)sh are obtained by mimicking (∗)sc verbatim, but
replacing the index set by P (λ) and the normal ultrafilter over Pκλ by a normal U over P (λ) that
contains the set {P ∈ P (λ) : ot P = κ}. Also:
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Qsh(g, κ, λ, x): λ > max(κ, rank(x)) and λ inaccessible and there exist a normal ul-
trafilter U over P (λ) such that {P ∈ P (λ) : ot P = κ} ∈ U and a
function h : P (λ) → Vκ such that {P : g(P ∩ κ) = h(P )} ∈ U and, if
M denotes the transitive collapse of the ultrapower V P (λ)/U , then in
M , x = [h]U .

Now obtain Q′
sh(g, κ, λ, x), taking ultrapowers over some Vγ where γ is regular and > 22

λ

, and
observe that for all g, κ, λ, x,

Qsh(g, κ, λ, x) ⇐⇒ Q′
sh(g, κ, λ, x).

As in the super-almost-huge case, the analogy with Theorem 2.32 stops here: a “superhuge Laver
sequence” g at κ cannot be characterized by either of the formulas ∀x∀λQsh, ∀x∀λQ′

sh. A syntactic
classification of such Laver sequences will be obtained in Theorem 5.15.

§3. The Wholeness Axiom.

We formalize WA by adding a single unary function symbol j to the usual language {∈} of ZFC,
and by adding to the axioms of ZFC other axioms which assert that j is a nontrivial elementary
embedding and that Separation (but not Replacement) holds even for formulas with occurrences
of j. We will call a formula in the extended language an ∈-formula if it has no occurrence of j, and
a j-formula if it has such an occurrence; if we wish to leave open either possibility, we will call it a
{∈, j}-formula.

3.1 Definition. (ZFC +WA) The axiom system ZFC +WA consists of the usual axioms of ZFC
together with the following:

(1)φ (Separation Schema for j-formulas). Each instance of the usual Separation schema involv-
ing φ is an axiom (where φ is a j-formula).

(2)φ (Elementarity Schema for ∈-formulas). Each of the following j-sentences is an axiom,
where φ(x1, x2, . . . , xm) is an ∈-formula,

∀x1, x2, . . . , xm
(
φ(x1, x2, . . . , xm)⇐⇒ φ(j(x1), j(x2), . . . , j(xm))

)
;

(3) (Nontriviality). ∃x (j(x) = x).

Clearly, the theory ZFC+WA is a recursive extension of ZFC. When we informally talk about
“adding WA to ZFC,” or when we say in a proof “assume WA”, we mean that we are working in the
language {∈, j} and in the theory ZFC+WA as described above. When we interpret j in a model,
the resulting elementary embedding will be denoted j and will often be called the WA-embedding.
In this section, and this section only, we will be careful to use ‘j’ only for the WA-embedding, and
to observe the distinction between j and j.

In the sequel, we will often have occasion to speak of elementary embeddings and elementary
substructures, sometimes obtained by restricting the WA-embedding j—or through some other

30



construction involving j—and sometimes unrelated to j; in every case, the “elementarity” will be
with respect to {∈}-formulas only.

Let us assume now that we have a fixed Gödelization of the syntax of ZFC +WA and have
built up a set L of hereditarily finite sets consisting of analogues to the basic symbols and formulas
of the language of set theory (without constants); in addition, we assume we have a class LV ⊇ L
that also includes a “constant” χ(a) for each set a, where χ is a simply definable class function.
Assume that for each of these languages, we have defined relations vble, fmla,∈ -fmla,∈ -sent (and
other such sets) that correspond to the sets of variables, formulas, ∈-formulas, and ∈-sentences,
and that are absolute for models of ZFC. Since L has no constants, we may assume that these
relations, as defined for L, are subsets of Vω. Note that every {∈, j}-formula Φ(x1, . . . , xn) has an
L- counterpart in Vω which we denote (just in this section of the paper) φ(x1, . . . , xn). Assume
further that we have defined a “satisfaction” predicate Sat(x, y) for LV so that for each ∈-formula
Φ(x1, x2, . . . , xm) having L-counterpart φ(x1, x2, . . . , xm)

ZFC � ∀M ∀a1 ∈ M ∀a2 ∈ M . . . ∀am ∈ M
(
ΦM [a1, a2, . . . , am]

⇐⇒ Sat(M,φ(χ(a1), χ(a2), . . . , χ(am)).

For details concerning this approach to formalizing syntax, see [10]. We will make use of the
formalisms described above to prove some of the basic facts about WA, and relax into a less fussy
standard in Sections 4-8.

We begin our sequence of proofs of basic facts about WA with the observation that for each n

and each set x, jn(x) is also a set. We express the relation jn(x) = y as a 3-place relation added
by definitional extension: Let Φ(n, x, y) be the following formula:

n ∈ ω =⇒ ∃!f [“f is a function” ∧ dom f = n+ 1 ∧ f(0) = x∧
∀i (0 < i ≤ n =⇒ f(i) = j(f(i− 1))) ∧ f(n) = y].

The next proposition shows that Φ actually defines a binary function.

3.2 Proposition. ZFC +WA � ∀n ∈ ω ∀x∃!yΦ(n, x, y).

Proof. Proceed by induction on n within ZFC+WA. The case n = 0 is trivial. For the induction
step, let x be arbitrary, and let y be unique such that Φ(n, x, y) with unique witness f having
domain n+ 1. Define f̂ on n+ 2 so that it extends f and f̂(n+ 1) = j(f(n)). Now f̂ is the unique
function witnessing Φ(n+1, x, j(y)). Moreover, j(y) witnesses ∃yΦ(n+1, x, y), and j(y) is the only
such witness. This establishes the induction step and completes the proof.

We can now show that the WA-embedding has a critical point:

3.3 Proposition. The following are provable in ZFC +WA:

(1) ∀α [α ∈ ON =⇒ j(α) ≥ α];
(2) ∃α [α ∈ ON ∧ j(α) > α].
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Proof. For (1), this follows from elementarity, as usual. For (2), assume that no ordinal is moved;
use the Separation Schema for j-formulas to obtain x of least rank such that j(x) = x. Note that
rank(x) = rank(j(x)). Then

y ∈ x ⇐⇒ j(y) ∈ j(x)⇐⇒ y ∈ j(x),

giving the contradiction.

We will denote the critical point of j by cp(j), and, in this section only, we will reserve the
letter ‘κ’ for this critical point. The term κ is to be thought of as a constant, added to ZFC+WA
by a one-step extension by definitions.

Next, we show that for each set x and each n, jn |\ x is also a set; this coincides with one of
our intuitive requirements in formulating WA (see §1):

3.4 Proposition. ZFC + WA � ∀n∀X∃F [“F is a function” ∧ dom F = X ∧ ∀x ∈ X (jn(x) =
F (x))].

Proof. Given n,X, let Y = jn(X). Then use the Separation Schema for j-formulas to obtain
F = {(x, y) ∈ X × Y : y = jn(x)}.

Informally, the F of the preceding proposition is the restriction jn |\ X. The proposition can
be used to perform another one-step extension by definitions obtained by adding the three-place
relation F = jn |\ X.

The next proposition shows that restrictions of the WA-embedding are themselves elementary
embeddings.

3.5 Proposition. ZFC +WA � ∀M “j |\ M :M → j(M) is an elementary embedding”.

Proof. Informally, applying j yields, for any ∈-formula Φ(x, y) and any a, b, M |= Φ[a, b] ⇐⇒
j(M) |= Φ[j(a), j(b)]. As usual, this can be formalized to yield a proof from ZFC + WA of the
sentence

∀φ∀x∀y
[
[φ ∈ (∈ -fmla) ∧ {x, y} ⊂ vble] =⇒[
Sat

(
M,φ(χ(x), χ(y))

) ⇐⇒ Sat
(
j(M), φ(χ(jx), χ(jy))

)]]
.

We can now show that the sequence 〈κ, j(κ), . . . , jn(κ), . . .〉 is cofinal in ON (note that this sequence
is a legitimate class for ZFC +WA, defined as {(x, y) : x ∈ ω ∧ y = jx(κ)}).

3.6 Proposition. ZFC +WA � ∀α∃n ∈ ω [jn(κ) ≥ α].

Proof. If this fails (in some model), then λ = sup{jn(κ) : n ∈ ω} exists, and since jn respects
rank, it follows from elementarity that j |\ Vλ+2 : Vλ+2 → Vλ+2. By Proposition 3.5, j |\ Vλ+2 is a
nontrivial elementary embedding, contradicting Kunen’s Theorem (see Theorem 2.14).
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Proposition 3.6 implies that several predicates of interest are not weakly definable in any model
of ZFC; we first review the definition of weak definability in a model of set theory:

3.7 Defintion. Suppose M is a model of ZF and X ⊂ M . Then X is weakly definable in M if
the expanded model 〈M,∈,X〉 satisfies all instances of Replacement for formulas of the expanded
language.

We show that the notion of weak definability has been appropriately named:

3.8 Theorem. Suppose M is a model of set theory and X ⊂ M . Suppose W ⊂ M is weakly

definable in M and X is definable in 〈M,∈,W 〉. Then X is weakly definable in M . In particular,

if X ⊂ M is definable in M then X is weakly definable in M .

Outline of Proof. We restrict our attention to standard models 〈M,∈〉. Let W ⊂ M be as in the
hypothesis, and suppose X ⊂ M is definable in 〈M,∈,W 〉 by Φ(x, y) with parameter a ∈ M . Let
ψ(x, y) be an X-formula and suppose A ∈ M is such that

〈M,∈,X〉 |= ∀x ∈ A∃!y ψ(x, y).

Obtain a W -formula ψ̄ equivalent in 〈M,∈,X,W 〉 to ψ by replacing each occurrence of ‘z ∈ X’
with ‘Φ(z, a)’. Then

〈M,∈,W 〉 |= ∀x ∈ A∃!y ψ̄(x, y).
Since all instances of Replacement involvingW -formulas hold in 〈M,∈,W 〉, we can use Replacement
to obtain Y ∈ M such that

〈M,∈,W 〉 |= ∀x ∈ A∃y ∈ Y ψ̄(x, y).

Replacing ψ̄ with ψ yields:

〈M,∈,X〉 |= ∀x ∈ A∃y ∈ Y ψ(x, y),

as required.

3.9 Proposition. Suppose 〈M,∈, j〉 is a model of ZFC + WA. Then the sequence

〈κ, j(κ), j2(κ), . . .〉 is not weakly definable in 〈M,∈〉.

Proof. Suppose F is weakly definable in M , where F = 〈κ, j(κ), j2(κ), . . .〉. Then, by weak
definability we can use Replacement to obtain:

〈M,∈, F 〉 |= ∃z [z = F ′′ω ∧ ∃λ (λ = sup z)].

Letting z, λ be witnesses, we can prove

〈M,∈〉 |= “j |\ Vλ+2 : Vλ+2 → Vλ+2 is a nontrivial embedding”,
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and we have a contradiction.

From Proposition 3.9, we can show other familiar collections are not weakly definable:

3.10 Metatheorem. If 〈M,∈, j〉 is a model of ZFC+WA, none of the following subcollections of
M is weakly definable in 〈M,∈〉:
(1) j;

(2) j |\ ON : ON → ON ;

(3) j′′ON ;

(4) j′′M .

Proof. All four parts are proved using Theorem 3.8. For (1), notice that if j is weakly defin-
able in 〈M,∈〉, then, since the sequence 〈κ, j(κ), j2(κ), . . .〉 is definable from j (i.e. in 〈M,∈, j〉),
Theorem 3.8 shows that 〈κ, j(κ), j2(κ), . . .〉 is weakly definable in 〈M,∈〉, contradicting
Proposition 3.9. Part (2) follows using exactly the same reasoning. For (3), note that j |\ ON

is definable from j′′ON : it is in fact the increasing enumeration of j′′ON . Finally, for (4), note
that j′′ON is definable from j′′V .

We now show that
Vκ ≺ Vj(κ) ≺ . . . ≺ Vjn(κ) ≺ . . . ≺ V

forms an elementary chain. We do this in two steps; this allows us to prove that the claim can be
formalized and proven within ZFC +WA.

3.11 Proposition. ZFC +WA � ∀n ∈ ω [Vκ ≺ Vj(κ) ≺ . . . ≺ Vjn(κ)].

Proof. Proceed by induction on n within ZFC + WA. Start with the fact that j |\ Vκ is an
elementary inclusion map, and hence Vκ ≺ Vj(κ). For the induction step, apply j.

We should perhaps mention that in the argument above, we have not made the mistake of
thinking that elementary substructures preserve j-formulas. For instance, we were able to conclude
that j |\ Vκ : Vκ ≺ Vj(κ) by using Proposition 3.5 and the fact that

ZFC � ∀i∀M [“i is elementary” ∧ M ∈ dom i ∧ i |\ M = idM =⇒ i |\ M :M ≺ i(M)].

We will use arguments of this kind throughout the sequel without special mention. The next
proposition shows that for all n, Vjn(κ) ≺ V . Technically, the result is a schema and is proven by
induction in the metatheory.

3.12 Proposition. (Metatheorem) For each ∈-formula Φ(x1, x2, . . . , xm) and corresponding L-
formula φ(x1, x2, . . . , xm)

ZFC +WA � ∀a1∀a2 . . . ∀am
[
Φ(a1, a2, . . . , am)

⇐⇒ ∃k ∈ ω ∀n ≥ k Sat
(
Vjn(κ), φ(χ(a1), χ(a2), . . . , χ(am))

]
.
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Proof. Proceed by induction on the complexity of Φ in the metatheory. As in the usual proof
(cf. [7]), the only interesting case is when Φ(x1, x2, . . . , xm) ≡ ∃yΨ(y, x1, x2, . . . , xm). If k ∈
ω is such that for all n ≥ k, Sat

(
Vjn(κ), φ(χ(a1), χ(a2), . . . , χ(am))

)
, let b be such that for all

n ≥ k, Sat(Vjn(κ), ψ(χ(b), χ(a1), χ(a2), . . . , χ(am))), where ψ is the L-formula corresponding to
Ψ (by Proposition 3.11, such a b can be found). By the induction hypothesis, it follows that
Ψ(b, a1, a2, . . . , am), whence Φ(a1, a2, . . . , am).

Conversely, assume Φ(a1, a2, . . . , am) and let b be such that Ψ(b, a1, a2, . . . , am). Using the
induction hypothesis, one can find k ∈ ω such that for each n ≥ k, b ∈ Vjn(κ) and Sat

(
Vjn(κ),

ψ(χ(b), χ(a1), χ(a2), . . . , χ(am))
)
, and the result follows.

Proposition 3.12 gives us a formula Tr which is provably (in ZFC+WA) a truth definition for
ZFC; namely, for each φ ∈ Vω, define Tr by requiring that, if φ ∈ L and φ ∈ (∈ -sent), then

Tr(φ)⇐⇒ Sat(Vκ, φ).

Note that since κ is definable from j, Tr is definable without parameters. On the other hand, note
that κ is not definable by ∈-formulas φ with parameters in Vκ: If there were a ∈ Vκ and a formula
φ(x, a) such that for all β,

β is the critical point of j ⇐⇒ (V,∈) |= φ(β, a),

then applying j to (V,∈) |= φ(κ, a) yields (V,∈) |= φ(j(κ), a), which is impossible. (Our observation
here of course fails if we relax the requirement that a ∈ Vκ; a = κ is a counterexample.)

We now turn to some results on WA that establish bounds on its consistency strength.

3.13 Theorem.

(1) ZFC + I3 � Con(ZFC+WA);
(2) ZFC + I3 � Con(ZFC+WA) =⇒ Con(ZFC + I3), unless ZFC + I3 is inconsistent.

(3) ZFC +WA � Con(ZFC+WA) =⇒ Con(ZFC +WA+ ¬I3).

Proof. To prove (1), assume I3(κ), and let i : Vλ → Vλ be elementary with critical point κ. It is
easy to see that 〈Vλ,∈, i〉 |= ZFC +WA.

For (2), putting (1) together with ZFC+ I3 � Con(ZFC+WA) =⇒ Con(ZFC+ I3) would give
us ZFC + I3 � Con(ZFC + I3), which, by Gödel’s Incompleteness Theorem, implies ZFC + I3 is
inconsistent.

For part (3), we use a trick mentioned in [20, 6.9]. Let us first observe that, assuming I3(κ),
there is a λ that is definable from κ for which there is an elementary embedding i : Vλ → Vλ; we let
λκ denote the least such. Now, working in ZFC+WA, define the class M = {x : ∀κ(I3(κ) =⇒ x ∈
Vλκ

)}. Now if ∀κ¬I3(κ), then M = V ; but if ∃κ I3(κ), then M = Vλκ
where κ is least for which

I3(κ). In either case, M |= ZFC +WA+ ¬I3.
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Although consistency-wise, WA is weaker than all the axioms I3-I0, if κ is the critical point of
the WA-embedding, then κ is always larger than the least critical point of an Im-embedding (for
0 ≤ m ≤ 3), whenever both kinds of embeddings exist:

3.14 Theorem. Assume WA and let κ be the critical point of the WA-embedding j. Suppose
further that A(x) is a large cardinal property (having just one free variable) and ∃λA(λ). Then
(1) there is λ < κ such that A(λ); and
(2) A(κ) =⇒ |{α < κ : A(α)}| = κ.

Proof. For (1), since Vκ ≺ V , it follows that there is λ < κ such that A(λ). For (2), use the
embedding j to define a normal ultrafilter D over κ; then if A(κ) holds, then {α < κ : A(α)} ∈ D.

To prove that WA implies super-n-huge for every n, we invoke a lemma that shows how to
apply the WA-embedding j to itself in various ways to obtain other elementary embeddings having
arbitrarily large jk(κ) as critical points with image jk+n(κ) for arbitrarily large n; the lemma will
prove useful in other contexts later.

3.15 Lemma. Assume WA and let j be the WA-embedding. For each k ≥ 0,m > k, and n ≥ 1,
there is an elementary embedding i = ik,m,n : Vβ → Vjn(β) such that

(1) cp(i) = jk(κ);
(2) β = jm(κ);
(3) i(j-(κ)) = j-+n(κ), for all I ≥ k for which j-(κ) ∈ Vβ .

Proof. Define ik,m,n inductively with respect to k as follows:

i0,m,n = jn |\ Vjm(κ), for m > 0 and n ≥ 1;
ik+1,m,n = j

(
ik,m−1,n |\ Vjm−1(κ)

)
, for m > k + 1 and n ≥ 1.

That ik,m,n satisfies (1)− (3) is proved by a simple induction.

Three examples of embeddings as defined in Lemma 3.15 that we will use later are:

i0,1,1 = j |\ Vj(κ);

i1,2,1 = j
(
j |\ Vj(κ)

)
;

i2,3,1 = i1,2,1(i1,2,1).

Note that i1,2,1 is the analogue of j · j for definable elementary embeddings (as in Definition 2.16),
and that i2,3,1 is the analogue of (j · j) · (j · j). It follows readily that if we let U denote the normal
ultrafilter over κ derived from the WA-embedding j, then, as in Definition 2.16,

U j = {X ⊂ j(κ) : j(κ) ∈ i1,2,1(X)};
U jj = {X ⊂ j2(κ) : j2(κ) ∈ i2,3,1(X)}.
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As in Definition 2.16, U j is a normal ultrafilter over j(κ) and U jj is a normal ultrafilter over j2(κ).

3.16 Theorem. Assume WA and let κ be the critical point of the WA-embedding j. Then κ is

the κth cardinal which is super-n-huge for every n.

Proof. Let κ0 = κ and for each n ≥ 1, let κn = jn(κ). We first verify that κ is n-huge for every
n. But this is easy since, for each n, the normal ultrafilter over P (jn(κ)) derived from j witnesses
that κ is n-huge.

Now, to prove super-n-hugeness for every n, it suffices to show that for all m,n ∈ ω, κ is
n-huge with κm targets. We will first show that there is a stationary subset S1 of j(κ) each of
whose elements is the target of an n-huge embedding with critical point κ; then we apply a suitable
elementary embedding repeatedly to S1 to show that similar stationary sets exist below each κm.

Let U j be as in the remarks following Lemma 3.15. Let

S1 =
{
α < j(κ) : α is a target of some n-huge embedding having critical point κ

}
.

Then S1 ∈ U j since j(κ) is a target of an n-huge embedding having critical point κ, as we just
showed. Hence, S1 is stationary.

For each m > 0, let im = i1,m,1 as in Lemma 3.15. Now for each m > 0, inductively define

Sm+1 = im+1(Sm).

By elementarity, Sm is a stationary subset of κm each of whose elements is a target of an n-huge
embedding with critical point κ.

Finally, to see that κ is the κth cardinal that is super-n-huge for every n, apply
Proposition 3.14(2).

The fact that j is not definable implies j(κ) must be quite large:

3.17 Proposition. Suppose 〈M,∈, j〉 is a model of ZFC + WA and suppose that G: ONM →
ONM .

(1) If G is definable in M with parameters in V M
κ (and defined by an ∈-formula), then j(κ) >

GM (κ).
(2) If G is weakly definable inM , then there is n ∈ ω such that for all m ∈ ω, jn(κ) >

(
Gm(κ)

)M
.

Proof. For (1), arguing in M , since Vj(κ) ≺ V , G(κ) = GVj(κ)(κ) < j(κ). For (2), because all
instances of Replacement involving occurrences of G (but not j) hold in 〈M,∈, j,G〉, the sequence
〈Gn(κ) : n ∈ ω〉 has a supremum λ in that model; let n be such that jn(κ) > λ.

In Part (1) of Proposition 3.17, “definable” cannot be replaced by “weakly definable” since,
for each model 〈M,∈, j〉 of ZFC + WA and each n ∈ ω, there is a Gn : ONM → ONM , weakly
definable in M , such that jn(κ) ≤ Gn(κ) (let Gn be the constant function with value jn(κ)).
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We conclude this section with a result that is related to the undefinability of j: the WA-class
{κ, j(κ), j2(κ), . . .} is a class of indiscernibles for V . We again adopt the notation κ0 = κ and for
each n ≥ 1, κn = jn(κ).

3.18 Theorem. Assume WA. Suppose m1 < m2 < . . . < ms and n1 < n2 < . . . < ns, and

φ(x1, . . . , xs) is an ∈-formula with all free variables displayed. Then

φ(κm1 , . . . , κms
)⇐⇒ φ(κn1 , . . . , κns

).

To prove the theorem, we need the following lemma:

3.19 Lemma. Assume WA. Given n1 < n2 < . . . < ns and r > max({nm+1 − nm : 1 ≤ m < s}),
there are u < w and i : Vκu

→ Vκw
such that i is an elementary embedding with critical point

> κn1 and for 1 < m ≤ s,

i(κnm
) = κn1+(m−1)r.

Proof. Let {nm : 1 ≤ m ≤ s}, r be as in the hypothesis. For each m with 2 ≤ m ≤ s, let
tm = nm−1 − nm + r. Note that for each such m, tm > 0. We define cardinals λ1 ≤ λ2 ≤ . . . ≤ λs

and, for 1 ≤ m ≤ s, elementary embeddings im : Vλm
→ Vλm+1 so that the embedding i required

by the lemma is is ◦ is−1 ◦ . . . i2 ◦ i1, and κu = λ1, κw = λs+1.
Let λ1 = κn1+sr = λ2;λ1 is big enough so that for all m, κnm

∈ Vλ1 . Let i1 = id : Vλ1 → Vλ2 .
Pick i2 : Vλ2 → Vλ3 so that cp(i2) = κn2 and for all I ≥ n2, κ- ∈ Vλ2 implies i2(κ-) = κ-+t2 . In the
notation of Lemma 3.15, i2 = in2,n1+sr,t2 .

In general, use Lemma 3.15 to choose im : Vλm
→ Vλm+1 so that

cp(im) = (im−1 ◦ im−2 ◦ . . . ◦ i2 ◦ i1)(κnm
);

im(κ-) = κ-+tm , for κ- ≥ cp(im) and κ- ∈ Vλm
.

Since we are using Lemma 3.15, notice that λ1, λ2, . . . , λs+1 are completely determined by our
choice of λ1.

Claim 1. For each m, 2 ≤ m ≤ s, for each k, 1 ≤ k ≤ m,

(ik ◦ ik−1 ◦ . . . ◦ i2 ◦ i1)(κnm
) = κn1+nm−nk+(k−1)r.

Proof of Claim 1. This is an easy induction on k.

Claim 2. For each m, 2 ≤ m ≤ s,

cp(im) = κn1+nm−nm−1+(m−2)r;

im(cp(im)) = κn1+(m−1)r.

Proof of Claim 2. Recall that

cp(im) = (im−1 ◦ im−2 ◦ . . . ◦ i2 ◦ i1)(κnm
);

im(cp(im)) = (im ◦ im−1 ◦ . . . ◦ i2 ◦ i1)(κnm
).
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By Claim 1, the result follows.

To complete the proof of the lemma, let i = is ◦ is−1 ◦ . . . i2 ◦ i1 : Vκu
→ Vκw

. Then, by Claim
2, for each m, 2 ≤ m ≤ s,

i(κnm
) = (is ◦ is−1 ◦ . . . i2 ◦ i1)(κnm

)

=
(
is ◦ . . . ◦ im+1

)[
(im ◦ . . . ◦ i2 ◦ i1)(κnm

)
]

=
(
is ◦ . . . ◦ im+1

)[
im(cp(im))

]
=

(
is ◦ . . . ◦ im+1

)(
κn1+(m−1)r

)
= κn1+(m−1)r,

as required.

Proof of Theorem 3.18. Without loss of generality, assume m1 ≤ n1. If m1 < n1, then by
applying jn1−m1 we have that

φ(κm1 , κm2 , . . . , κms
)⇐⇒ φ(κn1 , κm2+n1−m1 , . . . , κms+n1−m1),

and so we may assume that n1 = m1.
Let r > max({z : ∃k [1 ≤ k < s ∧ (z = nk+1 − nk ∨ z = mk+1 −mk)]}). Then by the lemma,

there are elementary embeddings i : Vκu
→ Vκw

î : Vκû
→ Vκŵ

so that for each k, 1 ≤ k ≤ s,

i(κnk
) = κn1+(k−1)r

î(κmk
) = κn1+(k−1)r.

Thus,
φ(κn1 , κn2 , . . . , κns

)⇐⇒ φVκu (κn1 , κn2 , . . . , κns
)

⇐⇒ φVκw (κn1 , κn1+r, κn1+2r, . . . , κn1+(s−1)r)

⇐⇒ φ(κn1 , κn1+r, κn1+2r, . . . , κn1+(s−1)r)

⇐⇒ φVκŵ (κn1 , κn1+r, κn1+2r, . . . , κn1+(s−1)r)

⇐⇒ φVκû (κm1 , κm2 , . . . , κms
)

⇐⇒ φ(κm1 , κm2 , . . . , κms
),

as required.

We remark that a result like this does not hold for the familiar definable elementary embeddings
j : V → M that we study here: First, suppose such a j is definable (in 〈V,∈〉) by a formula ψ(x, y)
(without extra parameters). If φ(z) is the one-parameter formula that asserts “z is the least
ordinal such that ∃y ψ(z, y) ∧ z = y,” then clearly φ(κ) is not equivalent to φ(jn(κ)) for any n > 0.
Moreover, familiar embeddings j : V → M (such as measurable, λ-strong, λ-supercompact, almost
huge, and huge), though not generally definable without parameters, can be so defined in special
cases, assuming V = HOD. (And it is known that V = HOD is consistent with these types of large
cardinals, modulo extra hypotheses; see [8].)
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§4. Laver Sequences.

As we mentioned in the Introduction, Laver sequences have been used in many contexts to
achieve strong diamond-like reflection in a variety of arguments; in this section, we begin a study of
Laver sequences themselves as interesting mathematical objects in their own right. As we shall see,
the Wholeness Axiom, defined in Section 3, provides a natural context for a direct construction of
Laver sequences, and for generalizing the concept to other kinds of large cardinals. We begin with
a definition of Laver sequences and some natural questions about them.

4.1 Definition. Suppose κ is an infinite cardinal. A Laver sequence at κ is a function f : κ → Vκ

such that for every set x and every λ ≥ max(κ, |TC(x)|) there is a normal ultrafilter U over Pκλ

such that x = iU (f)(κ).

Question #1. Is there a direct construction of a Laver sequence? The only published con-
struction of a Laver sequence—apart from minor modifications that have been devised—is
Laver’s original indirect proof that a Laver sequence must always exist at a supercompact
cardinal [22]. The construction is not easy to modify for constructing Laver sequences with
various properties. A direct construction would be useful.

Question #2. Is there a Laver sequence f : κ → Vκ that is definable (undefinable) in

Vκ? The question of definability of Laver sequences is of interest because, as we show in
Corollary 4.6, assuming WA, V = HOD iff there is a Laver sequence definable in Vκ. Results
like Theorems 3.14 and 3.18 and Proposition 3.17 suggest that if the construction of a Laver
sequence depends “enough” on the WA-embedding, it will have to be undefinable.

Question #3. Is there a Laver sequence f : κ → Vκ such that the function α �→ |f(α)|
dominates on a large set every function κ → κ that is definable in Vκ? Note that a positive
answer would give an example of an undefinable Laver sequence. The question is also motivated
by the following observation: Let us call a class function G : ON → ON relatively bounded at

κ if the parameters of G are in Vκ and there is a λ > κ such that for all transitive set models
M of ZFC containing the parameters of G, GM (κ) < λ. (As an example, using absoluteness of
∆ZF

1 formulas and an easy counting argument, one shows that every class function ON → ON

defined by a ∆ZF
1 formula and having parameters in Vκ is relatively bounded at κ.) It can be

shown that if Vκ ≺ V and f : κ → Vκ is Laver, α �→ |f(α)| dominates, on a normal measure 1
set, every function G |\ κ for which G : ON → ON is relatively bounded at κ. Thus,
Question #3 asks for a particular construction of an f that allows us to remove “relatively
bounded” from the hypothesis of this proposition. (To prove the proposition, assume Vκ ≺ V ,
let f : κ → Vκ be a Laver sequence, and let G : ON → ON be relatively bounded at κ, with
parameter z ∈ Vκ and bound a cardinal λ. Let Φ(x, y, z) define G. Let g = G |\ κ; note that
g : κ → κ. Let i : V → M be a λ+-supercompact embedding with i(f)(κ) = λ. It’s routine to
verify that i(g)(κ) = GN (κ) < λ = i(f)(κ) = |i(f)(κ)|, where N = V M

i(κ). Let D be the normal
ultrafilter on κ derived from i. Clearly, {α < κ : g(α) < |f(α)|} ∈ D.)
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Question #4. Can Laver sequences be defined for large cardinals other than supercompact
and strong? In Section 2 we gave a proof of the existence of Laver sequences for strong
cardinals; this was observed by Gitik and Shelah in [14] in obtaining indestructibility results
for strong cardinals. In his analogous results on huge cardinals (giving conditions under which
huge cardinals are resurrectable), Barbanel showed in [2] that, assuming κ is 2-huge with
embedding j, there is an f : κ → Vκ such that for all x ∈ Vj(κ) with |x| ≥ κ, there is a
huge embedding i such that i(f)(κ) = x. In a similar but more general vein, it would be
interesting to see to what extent all large cardinals have Laver sequences, and to what extent
the consequences of the existence of (supercompact) Laver sequences continue to hold for other
large cardinals.

Question #5. Are there strong hypotheses and interesting inner models N for which the
statement “f is Laver at κ” is absolute? The question arises in the following situation: Suppose
j : V → N is an elementary embedding and D is the normal ultrafilter over κ derived from
j. Suppose g : κ → Vκ is a function and {α < κ : g |\ α is Laver at α} ∈ D. If j happened to
be the WA-embedding, we could conclude that g is a Laver sequence at κ; for what N can we
draw the same conclusion (that g is a real Laver sequence at κ)?

We begin with Question #1; the next proposition provides a hint about how to obtain a direct
construction of a Laver sequence using WA:

4.2 Proposition. Assume WA. Let j be the WA-embedding with critical point κ, and suppose
f : κ → Vκ is a Laver sequence at κ. Then the set{

α < κ : f |\ α : α → Vα is a Laver sequence at α
}

is stationary.

Proof. Let D = {A ⊆ κ : κ ∈ j(A)}. Since j(f) |\ κ = f, we have{
α < κ : f |\ α : α → Vα is a Laver sequence at α

} ∈ D,

as required.

Thus we might expect to be able to directly build a Laver sequence f at the WA-critical point
κ by arranging to have f |\ α be Laver at α on a measure 1 set, and at other α, let f(α) witness
the failure of this fact. We will use WA to carry out this idea, but first prove that the construction
produces a Laver sequence under the much weaker assumption that κ is supercompact (and this
provides an answer to Question #1); we will also discuss the reasons for considering a proof of the
same result that requires a stronger hypothesis.

4.3 Canonical Construction CC(t) Given an arbitrary sequence t : κ → Vκ, define f : κ → Vκ

by recursion as follows:

f(α) =




tα if f |\ α is a Laver sequence at α
x ∈ Vκ if f |\ α is not Laver and α is a cardinal,

where ∃λ < κ φ(f |\ α, x, λ)
∅, if α is not a cardinal,
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where φ(g, x, λ) denotes the following formula:

“there exists a cardinal α such that max(α, |TC(x)|) ≤ λ and g : α → Vα, and
for all normal ultrafilters U over Pαλ, iU (g)(α) = x.”

We prove that f is Laver, assuming that κ is supercompact. First notice that by
Proposition 2.29, f is well-defined: whenever f |\ α is not Laver, there is an x ∈ Vκ that wit-
nesses this fact. Now suppose f is not a Laver sequence. Let x be a set such that for some λ,
φ(f, x, λ) holds. Let µ be a strong limit > 2λ

<κ

, let U be a normal ultrafilter over Pκµ, and
let iU : V → M be the canonical embedding. M contains all normal ultrafilters over Pκλ; thus
M |= φ(f, x, λ). Let D = {X ⊆ κ : κ ∈ iU (X)}. Notice that

(4.1) {α < κ : α is a cardinal and f |\ α is Laver at α} ∈ D;

otherwise, then M |= “f is Laver at κ”, from which it would follow that M |= ¬φ(f, x, λ). Thus,

{α < κ : α is a cardinal and ∃λ < κφ(f |\ α, f(α), λ)} ∈ D,

and so M |= ∃λ < iU (κ)φ(f, iU (f)(κ), λ). Now it is easy to verify (using Lemma 2.26(I)) that
M |= iU |λ(f)(κ) = iU (f)(κ), in violation of φ.

The construction CC(t) can be modified slightly for strong cardinals, and a proof similar to
the above (see Theorem 2.30(2)) can be given to show that assuming κ is strong, the modified
construction yields a strong Laver sequence.

The proof just given is essentially the same as Laver’s original proof. It has the interesting
feature that the set S = {α < κ : α is a cardinal and f |\ α is Laver at α} may or may not be large,
depending on the strength of the large cardinal hypothesis involved: if κ is the least supercompact,
S must be small (empty, in fact), but if κ is superhuge, S has normal measure 1 (see Theorems 5.13
and 5.35). This range of possiblities for S allows the proof to work even for the weakest possible
hypothesis (“κ is supercompact”). On the other hand, it does not allow us the freedom to pre-
determine the values of f on a large set using the parameter t, and, as we shall see, it precludes
the possibility of constructing certain types of Laver sequences that have strong properties. Also,
the proof does not generalize to other globally defined large cardinals.

By contrast, our WA proof of this result forces S to be large, making use of our motivating
result, Proposition 4.2. This fact guarantees that we can obtain Laver sequences with a wide variety
of properties. It also provides a template for constructing functions like f and showing that they
are Laver relative to other types of globally defined large cardinals. We will be able to use the
strategy of proving, for each kind of globally defined large cardinal, the existence of a correponding
type of Laver sequence under the assumption of WA, and then weakening the WA hypothesis as
far as possible in order to obtain optimal results.

The next proposition is our “WA proof” that f is Laver at κ. In Section 5, we will turn to the
task of weakening the large cardinal hypothesis that is used.

4.4 Theorem. Assume WA and let j : V → V be the WA-embedding with critical point κ. Let
D be the normal ultrafilter over κ derived from j.
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(1) The function f given by the construction CC(t) is a Laver sequence at κ.

(2) The sequence t of sets may be defined so that f is Laver at κ and the function α �→ |f(α)|
dominates, on a set in D, every function κ → κ that is definable in Vκ (with parameters).

(3) There exist λ,U such that λ > κ and U is a normal ultrafilter over Pκλ, D is the normal

ultrafilter over κ derived from iU , and |TC(iU (f)(κ))| ≤ λ.

Proof of (1) First note that, in the construction of f , whenever α is a cardinal for which f |\ α is
not Laver at α, there is indeed a pair (x, λ) ∈ Vκ such that φ(f |\ α, x, λ), because (by WA) Vκ ≺ V.

Now, suppose j : V → V is the WA-embedding with critical point κ. Let D be the normal
ultrafilter over κ derived from j. We observe first that if the set {α : f |\ α is Laver at α} ∈ D,

then, as κ ∈ j({α : f |\ α is Laver at α}), f is Laver at κ. So, to complete the proof, it suffices to
show that this set is indeed in D.

Assume that
{α : f |\ α is Laver at α} ∈ D.

Then the set {α < κ : ∃λ < κ φ(f |\ α, f(α), λ)} ∈ D, whence φ(f, j(f)κ, λ) for some λ < j(κ).
Let x = j(f)(κ). Let U be the normal ultrafilter over Pκλ derived from j. Now by Lemma 2.26(I),
iU (f)(κ) = x, and this is a contradiction.

Proof of (2) To ensure that α �→ |f(α)| dominates, on a D-measure 1 set, every function κ → κ

that is definable in Vκ (with parameters), we define the sequence t of sets in CC(t) as follows: Let
〈hξ : ξ < κ〉 enumerate the members of κκ which are definable in Vκ. Then, whenever f |\ α is a
Laver sequence at α, we let

(4.2) tα = sup{hξ(α) : ξ < α}+ 1.

Since the set of α for which f |\ α is Laver at α has D-measure 1, it follows that f dominates each
hξ on a D-measure 1 set.

Proof of (3)

V
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Let λ = |TC(j(f)(κ))|. Notice that by (2), λ > κ. Define U = {X ⊆ Pκλ : j′′λ ∈ j(X)} and
let iU : V → M be the canonical embedding. By Lemma 2.26(I), iU (f)(κ) = j(f)(κ). To see that
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D is derived from iU , let k : M → V be the usual embedding such that k ◦ iU = j. Then for all
X ⊆ κ, because k(κ) = κ,

κ ∈ j(X)⇐⇒ k(κ) ∈ k(iU (X))

⇐⇒ κ ∈ iU (X);

the result follows.

Note that we could have used the function α �→ rank(f(α)) in place of α �→ |f(α)| in (2) and
the proof would go through essentially unchanged.

We will call a Laver sequence satisfying the properties described in (2) and (3) above a special
Laver sequence. More precisely:

4.5 Definition. (Special Laver Sequences) A Laver sequence f : κ → Vκ is special if there exist
λ,U such that λ > κ, U is a normal ultrafilter over Pκλ, |TC(iU (f)(κ))| ≤ λ, and if D is the normal
ultrafilter over κ derived from iU , then for each g : κ → κ definable in Vκ, the function α �→ |f(α)|
dominates g on a set in D.

We observe for future use that an alternative definition of special Laver sequence is possible
using rank instead of transitive closure. Let us say that a Laver sequence g : κ → Vκ is special∗

if there are λ,U such that λ > κ, λ is a beth fixed point, U is a normal ultrafilter over Pκλ,
rank(iU (g)(κ)) < λ, and if D is the normal ultrafilter over κ derived from iU , then for each
h : κ → κ definable in Vκ, the function α �→ rank(g(α)) dominates h on a set in D.

Our requirement that λ be a beth fixed point makes the definition of special∗ apparently
somewhat stronger than a strict analogue of special. We have introduced this extra condition
because, in the generalized context we shall consider in the next section, it lets us avoid certain
bookkeeping issues. Yet, in that context, the added condition is innocuous in the sense that, if a λ
with the other properties required for special∗ can be found at all, such a λ can be found that is a
beth fixed point.

A proof similar to Theorem 4.4(3) can be given to show that WA implies that there are special∗

Laver sequences as well as special ones. Theorem 4.9 shows that special Laver sequences (as well
as special∗ Laver sequences) are consistency-wise stronger than ordinary Laver sequences.

Theorem 4.4(2) gives an answer to Question #3; it also provides an example of an undefinable
Laver sequence (Question #2). The following corollary shows that the existence of a definable
Laver sequence is linked to the existence of a definable well-ordering of the universe.

4.6 Corollary. Assume WA. Then the following are equivalent:
(1) There is a Laver sequence at κ that is definable in Vκ (without parameters).

(2) V = HOD.

(In the Corollary, we mean the usual version of HOD obtained by ∈-formulas.)
Proof. In the proof, the term ‘definable’ will always mean ‘definable without parameters’. To
begin, let us recall that HOD can be characterized as the largest transitive model of ZF in which
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there is a definable well-ordering of the universe (see [17]). To prove (1)⇒ (2), suppose f : κ → Vκ

is a Laver sequence definable in Vκ. Define g : Vκ → κ by

g(x) = least α such that f(α) = x.

Let h : κ → g′′Vκ be the increasing enumeration of g′′Vκ. Define k : κ → Vκ by k = g−1 ◦ h. Now
k is a well-ordering of Vκ and since f is definable in Vκ, so is k. But now because Vκ ≺ V , the
defining formula for k defines a well-ordering of V as well.

For (2) ⇒ (1), assume V = HOD and that J is a definable well-ordering of V ; since Vκ ≺ V,

the induced well-ordering J |\ Vκ×Vκ is definable in Vκ with the same formula. Use the construction
CC(t) to define a Laver sequence f : κ → Vκ, with tα = ∅ whenever f |\ α is Laver at α, and with
the additional refinement that, in case f |\ α is not Laver at α, f(α) is chosen to be the J-least set
satisfying the second condition of the construction. Clearly, f is the required Laver sequence.

A natural question, which was brought to the author’s attention originally by a referee (in a
somewhat different context), is:

4.7 Open Question. Is V = HOD consistent4 with WA?

On the other hand, a model M [G] of ZFC +WA+ V = HOD can be obtained from a model
M of ZFC+WA by adding a Cohen real; the WA-embedding is preserved (since j fixes the Cohen
order), and, in M [G], HOD ⊂ M ; see [17, p. 260].

Although part (2) of Theorem 4.4 provides an example of an undefinable Laver sequence, the
proof requires κ to be much stronger than supercompact (since the first condition listed in the
definition of f given in CC(t) must hold almost everywhere). It is easy to see, using a counting
argument, that there must be undefinable Laver sequences whenever a Laver sequence exists at all:
Let us say, for Laver sequences g, h, that

(4.3)
g ∼L h ⇐⇒ ∀λ, i [(λ ≥ κ ∧ “i is λ-supercompact with critical point κ”)

=⇒ i(g)(κ) = i(h)(κ)
]
.

Then, given a Laver sequence f : κ → Vκ and any unbounded nonstationary subset A of κ, note
that altering the values of f on A produces another Laver sequence that is ∼L-equivalent to f .
Since there are 2κ ways to alter f on A and only κ definable (with parameters) functions κ → Vκ,
one such alteration must yield an undefinable Laver sequence. The next proposition exploits this
idea to exhibit particular generic examples of undefinable Laver sequences:

4.8 Proposition. If there is a Laver sequence at κ, there is also a Laver sequence at κ that is not
definable in Vκ.

Proof. Let f : κ → Vκ be a Laver sequence and let A denote the set of ordinals below κ that are
not cardinals. Let

P = {p : A → Vκ : p is a partial function and |p| < κ},
4Recent results [8] show that that the answer is yes, assuming the consistency of an I1

embedding.
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ordered by extension. Since P is < κ-closed, and since there are only κ dense subsets of P that are
definable in Vκ, we can inductively build a filter G that meets them all. Let g =

⋃
G : A → Vκ.

We can use the definable dense sets to show that g is a total function on A which is not definable
in Vκ (with parameters). Now define h : κ → Vκ by

h(α) =
{
g(α), if α ∈ A;
f(α), otherwise.

Clearly, h ∼L f and h is not definable in Vκ.

It follows from Proposition 4.8 (and our earlier observations) that each ∼L-equivalence class
has cardinality 2κ. The canonical construction can also be used to show that there are 2κ distinct
∼L-equivalence classes (assuming WA): For each X ∈ [κ]κ, let tXα = X ∩ α and let fX be the
function defined as in CC(tX). Assuming WA, fX is a Laver sequence. Let j : V → V be the
WA-embedding and let D be the normal ultrafilter over κ derived from j. Clearly, if X = Y , then
fX and fY disagree on a set in D. Thus, for any λ with κ < λ < j(κ), if U is the normal ultrafilter
over Pκλ derived from j, iU (fX)(κ) = iU (fY )(κ) whenever X = Y , as required.

We can use these ideas to obtain the same result assuming only that a Laver sequence on κ

exists: Thus, let f be any Laver sequence over κ, and define the functions tX ,X ∈ [κ]κ, as in the
last paragraph. We use f and the tX to build 2κ ∼L-nonequivalent Laver sequences gX directly.
Let λ,U0 be such that λ ≥ κ, U0 is a normal ultrafilter over Pκλ, and iU0(f)(κ) = 0. Let D0 be
the normal ultrafilter over κ derived from iU0 . Let Y0 = {α < κ : f(α) = 0}. Clearly Y0 ∈ D0.
Given X ∈ [κ]κ, let UX be normal over Pκλ so that iUX

(f)(κ) = X, and let DX be the normal
ultrafilter over κ derived from iUX

. Let YX = {α < κ : f(α) = tXα }. Again, YX ∈ DX . Note that
Y0 ∩ YX = {α : α ≤ minX}. Now define gX by

gX(α) =



0 if α ∈ YX \ Y0

tXα if α ∈ Y0

f(α) otherwise.

Certainly iU0(gX)(κ) = X, and so if X = X ′, iU0(gX) = iU0(gX′). Thus, we will be done when we
have shown that gX is Laver for each X. Let z be a set and λ ≥ max(κ, |TC(z)|). If z ∈ {0,X},
z can be captured by gX by picking normal ultrafilters that work for f and switching them, as
described in the previous paragraph. So, assume z ∈ {0,X}. Let Uz be normal over Pκλ so that
iUz
(f)(κ) = z. Let Dz be the normal ultrafilter over κ derived from iUz

. Notice that neither Y0

nor YX is in Dz (otherwise, iUz
(f)(κ) would be either 0 or X). Hence, f and gX agree on a set in

Dz; it follows that z = iUz
(g)(κ), as required.

As promised earlier, we now show that the existence of special Laver sequences is consistency-
wise much stronger than supercompactness:

4.9 Theorem. If there is a special Laver sequence at κ, then there is a model of set theory in
which there is a proper class of extendibles; moreover, it is consistent for κ to be the κth extendible.

Proof. The argument makes use of the reasoning in [27, 6.3, 6.4, 8.5]. Let f : κ → Vκ be a
special Laver sequence and let D be a normal measure on κ such that the function α �→ |f(α)|
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dominates, on a D-measure 1 set, each function κ → κ that is definable in Vκ. Let λ,U be such
that U is a supercompact ultrafilter over Pκλ so that D pulls back to U and |TC(iU (f)(κ))| ≤ λ.
Let iU : V → M be the canonical supercompact embedding derived from U .

We will begin by building a sequence 〈Mα : α < κ〉 of structures with the following properties:
(a) For all α < κ, Mα ∈ Vκ.
(b) The sequence 〈Mα : α < κ〉 is definable in Vκ.
(c) If α < β < κ and i : Mα → Mβ is an elementary embedding with critical point µ, then

Vκ |= “µ is extendible.”
Once we have defined 〈Mα : α < κ〉, we will obtain a D-measure 1 set ∆ with the property

that if α, β ∈ ∆, α < β, there is an elementary embeddingMα → Mβ with critical point α; by (c),
the first part of the theorem will follow.

To obtain 〈Mα : α < κ〉, begin by defining a function F : κ → κ by

F (α) =
{
α, if Vκ |= “α is extendible”;
α+ β, otherwise, where β is least for which Vκ |= “α is not β-extendible.”

Define C = {α < κ : F ′′α ⊆ α}. For each α < κ, let γα denote the least limit in C for which
γα > α. Let Mα = (Vγα

,∈, {α}, C ∩ γα) for each α < κ. To establish (c), we argue as follows:
Assume j :Mα → Mβ is elementary with critical point µ but Vκ |= “µ is extendible.” Then

F (µ) = ρ = µ+ δ for some δ > 0. We obtain a contradiction by showing Vκ |= “µ is δ-extendible,”
via the embedding j |\ Vρ. Note that because γα ∈ C, we have

µ < ρ < γα.

Thus (in Vκ), Vρ ∈ Mα, cp(j |\ Vρ) = µ, j(µ) < j(ρ), and j |\ Vρ : Vρ → Vj(ρ). We will be done
once we have shown that j(µ) > ρ. To do this, we first show that µ ∈ C: Suppose not. Let
ν = sup(C ∩µ) and let νC be the least element of C greater than ν. Then ν < µ < νC < γα. Since
cp(j) = µ, j(ν) = ν, and by the definition of νC from ν and C, j(νC) = νC . However, the least
fixed point of j above its critical point is λ = sup{jn(µ) : n ∈ ω}, whence λ ≤ νC . But now, γα is
a limit ordinal greater than λ, and this contradicts Kunen’s results (Theorem 2.15). Thus, µ ∈ C.
Finally, since C ∩ γα is a predicate for Mα, j(µ) ∈ C; since

µ ∈ j(µ), F ′′j(µ) ⊆ j(µ), and F (µ) = ρ,

it follows that ρ < j(µ), as required. This completes the proof of (c).
For each α < κ, let Xα = {ξ : there is an elementary embedding Mα → Mξ with critical

point α} and let T = {α < κ : Xα ∈ D}. We will show that T ∈ D; we will then conclude that the
diagonal intersection ∆ of the Xα relative to T is also in D, yielding a proper class of Vκ-extendibles
relative to the model Vκ.

To see that T ∈ D, first set

iU (〈Mξ : ξ < κ〉) = 〈M′
ξ : ξ < iU (κ)〉;

iU (〈M′
ξ : ξ < iU (κ)〉) = 〈M′′

ξ : ξ < i2U (κ)〉;
iU (〈Xα : α < κ〉) = 〈X ′

α : α < iU (κ)〉.
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Note that ξ < κ implies Mξ =M′
ξ. Also, if α < κ, Xα ∈ D iff κ ∈ iU (Xα) iff Mα is elementarily

embeddable into M′
κ with critical point α. So, for α < iU (κ), X ′

α ∈ iU (D) iff in M , M′
α is

elementarily embeddable into M′′
iU (κ) with critical point α. Thus, T ∈ D iff κ ∈ iU (T ) iff X ′

κ ∈
iU (D) iff in M ,M′

κ is elementarily embeddable into M′′
iU (κ) with critical point κ. Since iU |\ M′

κ :
M′

κ → M′′
iU (κ) = iU (M′

κ) is elementary, it suffices to show that iU |\ M′
κ ∈ M. Define h : κ → κ by

h(ξ) = |Mξ|. Since 〈Mξ : ξ < κ〉 is definable in Vκ, so is h; thus the function ξ �→ |f(ξ)| dominates
h on a D-measure 1 set, whence

iU (h)(κ) < |iU (f)(κ)| ≤ λ.

Since |M′
κ| = iU (h)(κ) and M is closed under λ-sequences, it follows that iU |\ M′

κ ∈ M, as
required.

For the “moreover” clause, first note that since ∆ ∈ D, it follows that

V M
iU (κ) |= “κ is extendible.”

But this implies that for each α ∈ ∆,

V M
iU (κ) |= “α is extendible, ”

for, if α were a counterexample, this fact would relativize down to Vκ (see Corollary 2.21).

We remark here that, with only minor modifications, the proof just given also shows that the
conclusion of Theorem 4.9 follows from the existence of special∗ sequences as well: As in the proof,
start with λ,U,D where, in this case, λ is a beth fixed point, and rank(iU (f)(κ)) < λ. Build
〈Mα : α < κ〉 as before; the proofs of (a) - (c) are the same. As before, to show that T ∈ D, it
suffices to show that iU |\ M′

κ ∈ M. Define h : κ → κ by h(ξ) = rank(Mξ). We obtain

iU (h)(κ) < rank(iU (f)(κ)) < λ.

Since rank(M′
κ) = iU (h)(κ) and λ is a beth fixed point, |M′

κ| < λ. By λ-closure, iU |\ M′
κ ∈ M.

The rest of the proof is identical. This observation will prove useful when we generalize the notion
of special Laver sequences to other large cardinals.

To conclude this section, we consider Question #4; we will make a few remarks concerning
Question #5 in Section 5 (see Proposition 5.30, Corollary 5.31, and remarks following). Our canon-
ical construction CC(t) and our proof of Theorem 4.4 will provide a template for our treatment
of Laver sequences relative to other large cardinals. As the definitions, constructions, and proofs
involved have many common features, we generalize to the setting of classes of elementary em-
beddings. As we shall see, if a class E of embeddings exhibits sufficient “compatibility” with the
WA-embedding j, then the sequence f obtained using the canonical construction CC(t) relative
to E will turn out to be an E-Laver sequence at κ. Moreover, we will show that most of the fa-
miliar globally defined large can be characterized in terms of classes of embeddings that exhibit
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the required properties. One conclusion will be that, if κ is the WA-critical point, then κ ad-
mits superhuge, super-almost-huge, extendible, supercompact, and strong Laver sequences, and
that, moreover, these Laver sequences can be constructed to exhibit the properties described in
Theorem 4.4 above.

Our classes E will consist of elementary embeddings of the form i : Vβ → M , where M is
transitive. We will impose certain conditions on these classes in order to study the notion of
Laver sequences in an abstract setting. To motivate these conditions, we begin with a couple of
observations about Laver sequences.

First, let us call a function g : κ → Vκ a generalized Laver sequence if for each x there is an
elementary embedding i : V → M such that x = i(g)(κ). Clearly, every Laver sequence and every
strong Laver sequence is generalized Laver; indeed, generalized Laver-ness is the weakest form of
Laver’s original notion that retains the property of “capturing every set.” As the next proposition
shows, κ will not admit even a generalized Laver sequence unless κ is a strong cardinal:

4.10 Proposition. Suppose κ is an infinite cardinal. Then the following are equivalent:

(1) κ is a strong cardinal;

(2) κ admits a strong Laver sequence;

(3) there is a function g : κ → Vκ such that for each x and each λ > max(κ, rank(x)) there is an
elementary embedding j : V → M such that j(κ) > λ and x = j(g)(κ);

(4) κ admits a generalized Laver sequence.

Proof. (1)⇒ (2) was proven in Theorem 2.30(2). For (2)⇒ (3), let g be a strong Laver sequence,
let x be a set, and let λ > max(κ, rank(x)). Use (2) to obtain an extender E with critical κ and
support Vλ+1 for which iE(g)(κ) = x; clearly iE(κ) > λ.

(3)⇒ (4) is immediate. For (4)⇒ (1), let g : κ → Vκ be a generalized Laver sequence and let
λ > κ. Let j : V → M be an elementary embedding such that j(g)(κ) = Vλ ∈ M . By elementarity,
Vλ ∈ V M

j(κ), whence λ < j(κ).

The proposition makes it natural to restrict our attention to classes E of embeddings for which
{i(κ) : i ∈ E} is a proper class and for which, for any x, there is i : Vβ → M ∈ E with x ∈ M .

4.11 Proposition. For each infinite cardinal κ and each function g : κ → Vκ, the following are

equivalent:

(1) g is Laver at κ;

(2) for every set x and every λ > max(κ, rank(x)) there are ζ, U such that ζ > λ and U is a

normal ultrafilter over Pκζ such that x = iU (g)(κ).

Proof. (1)⇒ (2) is immediate; to prove (2)⇒ (1), let x be a set and let λ ≥ max(κ, |TC(x)|). Let
ζ, U be such that ζ > max(λ, rank(x)) and U is a normal ultrafilter over Pκζ, with iU (g)(κ) = x.
Now use Lemma 2.26(I) to show that iU |λ(g)(κ) = x.
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Propositions 4.10 and 4.11 make it clear that the requirement on a function f—that for every
x and arbitrarily large λ, there is an appropriately defined embedding i such that i(f)(κ) = x

(and i(κ) > λ)—is sufficent to characterize each type of Laver sequence. This observation will
be important when we formulate a definition of Laver sequences for classes of embeddings. It
also shows that whether we use transitive closure or rank in the definition is purely a matter of
taste. (Having said this, it is perhaps interesting to note that the condition “λ > max(κ, rank(x))”
cannot be substituted for “λ ≥ max(κ, |TC(x)|)” in the standard definition of Laver sequences
(Definition 2.23): If κ is supercompact and f : κ → Vκ, let x = Vκ+3 and let λ = κ + 4. If U is a
normal ultrafilter over Pκλ and iU : V → M is the canonical embedding, then one has

|M ∩ Vλ| ≤ 2λ
<κ

< |x|,

and so x ∈ M . Thus, iU (f)(κ) = x.)
We can now describe the classes of embeddings that will concern us.

4.12 Definition (Regular Classes) Let θ(x, y, z, w) be a first-order formula (in the language {∈})
with all free variables displayed. We will call θ a suitable formula if the following sentence is
provable in ZFC:

∀x, y, z, w [θ(x, y, z, w) =⇒ “w is a transitive set” ∧ z ∈ ON ∧
∧ “x : Vz → w is an elementary embedding with critical point y”].

For each cardinal κ and each suitable θ(x, y, z, w), let

Eθ
κ = {(i,M) : ∃β θ(i, κ, β,M)}.

The definition of Eθ
κ requires some explanation. The reason that the codomain of an elementary

embedding i needs to be explicitly associated with i arises from the fact that, unlike most properties
of functions, the elementarity of i depends on its codomain, but the dependence is not built into
the definition of i as a function (i.e. as a set of ordered pairs). Thus (as the referee points out), it
is possible for an elementary embedding i : Vβ → M to be contained in some Vρ and yet M ∈ Vρ;
in this case, i generally loses its elementarity from the point of view of Vρ. Therefore, if we were
to define Eθ

κ to be the class {i : ∃β ∃M θ(i, κ, β,M)}, then for most of the suitable formulas θ that
will concern us, the classes Eθ

κ ∩ Vρ and
(Eθ

κ

)Vρ would be unequal—even if ρ is inaccessible—and
this would create numerous technical inconveniences.

For readability, however, we will treat elements of Eθ
κ as if they were elementary embeddings

rather than ordered pairs, whenever there is no possibility of ambiguous interpretation. Thus, in
such cases, we will write “i : Vβ → M ∈ Eθ

κ” when we mean “(i : Vβ → M,M) ∈ Eθ
κ” and “i ∈ Eθ

κ”
when we mean “(i,M) ∈ Eθ

κ for some M .” In cases where this approach would lead to ambiguity,
we will treat the elements of Eθ

κ explicitly as ordered pairs.
In the sequel, we will often declare, or attempt to demonstrate, that a class E is definable

from a suitable formula. The obvious meaning here is that for some suitable formula θ, E = Eθ
κ.
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However, because of the definition of suitability, the only free parameter that is allowed in such a
defining formula is κ; in this paper, we do not allow the notion “definable by a suitable formula
with extra parameters.”

Continuing with our definition:

Dom Eθ
κ = {β : ∃i ∈ Eθ

κ (dom i = Vβ)};
Eθ
κ(λ) = {i ∈ Eθ

κ : i(κ) > λ}.
We shall call Eθ

κ a regular class of embeddings at κ if

∀γ > κ∃β ≥ γ ∃i∃M [θ(i, κ, β,M) ∧ i(κ) > γ ∧ Vγ ⊂ M ].

In the above definition, if we remove the clause “i(κ) > γ,” Eθ
κ will be called semi-regular; if,

instead, we change “∃β ≥ γ” to “∃β > κ,” Eθ
κ will be called weakly regular; and, if we alter

the above definition by making both of these changes, the resulting class will be called weakly
semi-regular.

Our main results will be about regular classes or, when appropriate, arbitrary classes E defined
by a suitable formula. Our results about regular classes can often be generalized to the broader
classes described in the last paragraph. In Section 7 we examine the relationships between these
classes. For now, we note that, of these four types of classes, only two imply the existence of a
strong cardinal (though all four are equiconsistent with a strong cardinal):

4.13 Proposition. Suppose κ is an infinite cardinal. Then the following are equivalent:

(1) κ is a strong cardinal;

(2) there is a suitable formula θ such that Eθ
κ is regular;

(3) there is a suitable formula θ such that Eθ
κ is weakly regular.

Proof. For (1)⇒ (2), see Theorem 4.30 below; (2)⇒ (3) is obvious. For (3)⇒ (1), suppose Eθ
κ is

weakly regular and λ > κ; we would like to show that κ is λ-strong by obtaining an extender with
support Vλ using some i : Vβ → M ∈ Eθ

κ(λ) with Vλ ⊂ M . However, since it is possible that β < λ,
such an extender can fail to be well defined from i, using the usual definition. This difficulty can
be corrected by modifying the definition of extender so that normal measures are taken over sets of
the form lh(s)Vκ (where for some n, s : n → Vλ) rather than aVκ. The details of this modification
are worked out in [24]; in particular, it is shown there that an extender E = 〈E(s) : s ∈ <ωVλ〉 of
this new variety can be obtained from an elementary embedding j : V → N by setting E(a)(X) = 1
iff s ∈ j(X). Because the sets X lie in Vκ+1, we can define E in the same way using any i : Vβ →
M ∈ Eθ

κ(λ) with Vλ ⊂ M . It follows (see [24]) that κ is λ-strong.

We should point out that Proposition 4.13 has not been properly stated in ZFC since we have
apparently quantified over the formula θ. To state Proposition 4.13 formally, we can, for example,
express (1) ⇒ (2) by saying “if κ is a strong cardinal, then Eθstr

κ is a regular class,” where θstr
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is defined below, after Definition 4.28. On the other hand, (2) ⇒ (1) should be thought of as a
schema, so that for each θ the formal version of the following statement, dependent on θ, can be
proven in ZFC:

“θ is a suitable formula ∧ Eθ
κ regular =⇒ κ is strong”.

These ideas can be applied to restate the entire theorem (schema) in ZFC.

4.14 Definition (E-Laver Sequences) Suppose Eθ
κ is a class of embeddings, where θ is a suitable

formula. A function g : κ → Vκ is said to be Eθ
κ-Laver at κ if for each set x and each λ >

max(κ, rank(x)) there are β > λ, and i : Vβ → M ∈ Eθ
κ such that i(κ) > λ and i(g)(κ) = x.

For a given suitable formula θ, we define a formula φ(g, x, λ), depending on θ, as follows:

(4.4)
“there exists a cardinal α with g : α → Vα, such that λ > max(α, rank(x)) and

for all β > λ and all i : Vβ → M ∈ Eθ
α, if i(α) > λ then i(g)(α) = x.”

For the rest of the paper, we reserve the symbol ‘φ’ to refer to this formula exclusively.
It should be pointed out that our definition of Eθ

κ-Laver sequences makes sense even for non-
regular classes. This latitude is necessary in order to correctly state results about classes that
have no Eθ

κ-Laver function. This necessity will become apparent in our canonical construction of
an Eθ

κ-Laver sequence below, and will be pervasive in Section 5. As the next proposition shows,
however, if Eθ

κ admits an Eθ
κ-Laver sequence, it must be regular.

4.15 Proposition. Suppose θ is a suitable formula.

(1) A function g : κ → Vκ is Eθ
κ-Laver at κ if and only if the following holds:

∀x∀λ¬φ(g, x, λ).

(2) If, in Definition 4.14, the variable λ is restricted to limit ordinals only, we obtain an equivalent
definition.

(3) If Eθ
κ admits an Eθ

κ-Laver sequence, then Eθ
κ is a regular class.

Proof. Parts (1) and (2) are immediate. For (3), let g : κ → Vκ be Eθ
κ-Laver. Let γ > κ and, as

in Definition 4.14, obtain β > γ and i : Vβ → M ∈ Eθ
κ such that i(κ) > λ and i(g)(κ) = Vγ . Since

M is transitive, Vγ ⊆ M . Thus, β, i,M meet the requirements in the definition of regularity.

In our definition of E-Laver sequences, we have required that for a given x, there are embeddings
i that capture x and for which i(κ) is arbitrarily large. This second requirement is in the spirit of
Laver’s original definition; in some cases, however, it can be ignored. In particular, if there happens
to be a certain kind of definable relationship between the domains of i ∈ Eθ

κ and i(κ), then if we
can prove “i(g)(κ) = x,” it will follow that i(κ) > λ. We make this idea precise in the following
definition and proposition:
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4.16 Definition. (Correlated Classes) A class Eθ
κ defined by a suitable formula will be called

correlated if there is a strictly increasing class function F: Dom Eθ
κ → ON such that for each

β ∈ Dom Eθ
κ, F(β) ≤ β and for each i : Vβ → M ∈ Eθ

κ, i(κ) ≥ F(β).

We leave it to the reader to verify that Definition 4.16 can be stated so that no quantification
occurs over proper classes.

4.17 Proposition. If Eθ
κ is a correlated class of embeddings and g : κ → Vκ is such that for each

set x and each λ > max(κ, rank(x)), there are β > λ and i : Vβ → M ∈ Eθ
κ such that i(g)(κ) = x,

then g is Eθ
κ-Laver at κ.

Proof. Suppose Eθ
κ is a correlated class with class function F: Dom Eθ

κ → ON , and g satisfies the
condition in the hypothesis; we show g is Eθ

κ-Laver. Suppose x is a set and λ > max(κ, rank(x)).
Use the fact that F is strictly increasing to pick β ∈ Dom Eθ

κ large enough so that F(β) > λ and
such that for some i : Vβ → M ∈ Eθ

κ, i(g)(κ) = x; then λ < F(β) ≤ i(κ), as required.

Theorem 4.22 shows that, assuming WA, every regular class—indeed, every class defined by
a suitable formula—that is “compatible” with the WA-embedding j : V → V does have a Laver
sequence. We begin with a definition of compatibility:

4.18 Definition (Compatibility) Suppose κ < λ0 < β ≤ γ, and iβ : Vβ → N, iγ : Vγ → Mγ

are elementary embeddings with critical point κ. Then iβ is compatible with iγ up to Vλ0 if there
is kβ : N → Mβ = V

Mγ

iγ(β) such that kβ ◦ iβ = iγ |\ Vβ and kβ |\ Vλ0 ∩ N = idVλ0∩N . Suppose

j : V → M̃ is an elementary embedding with critical point κ, and suppose θ is a suitable formula.
We will say that Eθ

κ is compatible with j if for each λ, κ < λ < j(κ), there exist β, i such that
β ∈ Dom Eθ

κ, λ < β < j(κ), i : Vβ → M , (i,M) ∈ Eθ
κ, and i is compatible with j |\ Vβ up to Vλ.

V j ✲ V

Vβ
j|\Vβ ✲ Vj(β)

i

❄✑
✑

✑
✑

✑
✑✸

k

M

In this section, our use of the notion of compatibility will be restricted to the the case in which
the ambient elementary embedding is the WA-embedding j : V → V ; other codomains will be
considered in the next section.

Although compatibility is a fairly natural concept, it is highly non-absolute. Our interest in
this property lies in the fact that it has a handful of useful consequences. Our definition of weak
compatibility below, though less intuitive, provides us with exactly what we need when some form
of compatibility, and some degree of absoluteness, are required.
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4.19 Definition. (Weak Compatibility) Suppose j : V → N is elementary with critical point κ
and D is the normal ultrafilter over κ derived from j. Suppose θ is a suitable formula. Then Eθ

κ

is weakly compatible with j if for each λ, g : κ → Vκ, r : κ → P (κ) for which κ < λ < j(κ),
rank(j(g)(κ)) < λ, and r(δ) ∈ D for all δ < κ, there exist β, i,M such that i : Vβ → M ∈ Eθ

κ,
λ < β < j(κ), and

(1) i(g)(κ) = j(g)(κ);
(2) i(κ) > λ;
(3) if Di is the normal ultrafilter over κ derived from i, then r(δ) ∈ Di for all δ < κ.

4.20 Proposition. Suppose j : V → N is elementary with critical point κ and θ is a suitable

formula. Then if Eθ
κ is compatible with j, Eθ

κ is weakly compatible with j.

Proof. Suppose Eθ
κ is compatible with j. Let D be the normal ultrafilter derived from j. Given λ, g,

and r as in the definition of weak compatibility, use compatibility to pick β and i : Vβ → M ∈ Eθ
κ

so that λ + 1 < β < j(κ) and i is compatible with j |\ Vβ up to Vλ+1. This immediately implies
i(κ) > λ, and, by Theorem 2.26(II), since rank(j(g)(κ)) < λ, i(g)(κ) = j(g)(κ). Finally, argue
as in the proof of Theorem 4.4(3) to see that, if Di is the normal ultrafilter derived from i, then
Di = D.

We are ready for the analogue to the construction CC(t):

4.21 Canonical Construction CC(t, Eθ
κ). Suppose θ is a suitable formula and t : κ → Vκ is a

κ-sequence. Define f = ft,θ,κ : κ → Vκ by

f(α) =




tα if f |\ α is a Eθ
α-Laver sequence at α

x ∈ Vκ if α is a cardinal and f |\ α is not Eθ
α-Laver at α

where ∃λ < κ φ(f |\ α, x, λ);
∅ if α is not a cardinal.

As in the Canonical Construction 4.3, it is quite possible that f is not defined at all α < κ;
this happens whenever there is a cardinal α for which f |\ α is not Eθ

α-Laver, but for which there is
no counterexample in Vκ. Thus, verification that f is Laver for various classes will always require
a proof that f is well-defined.

We now show that, assuming WA, if E is sufficiently compatible with the WA-embedding, then
the f constructed above is E-Laver at κ.

4.22 Theorem. Assume WA, and κ is the critical point of the WA-embedding j. Suppose θ is a
suitable formula and Eθ

κ is weakly compatible with j. Then the function f : κ → Vκ defined in the

Canonical Construction CC(t, Eθ
κ) is Eθ

κ-Laver at κ.

Proof. First we note that, in the construction of f , if α is a cardinal such that f |\ α is not
Eθ
κ-Laver at α, there is (x, λ) ∈ Vκ such that φ(f |\ α, x, λ), since f |\ α ∈ Vκ and Vκ ≺ V ; hence f is
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well-defined. Let D be the normal ultrafilter over κ derived from j. As in Theorem 4.4, it suffices
to show that

{α < κ : f |\ α is Eθ
α-Laver at α} ∈ D.

Assume this condition fails; then

{α < κ : ∃λ < κφ(f |\ α, f(α), λ)} ∈ D.

It follows that for some λ < j(κ), φ(f, j(f)(κ), λ). Let x = j(f)(κ). Since Eθ
κ is weakly compatible

with j, we can obtain β and i : Vβ → M ∈ Eθ
κ with λ < β < j(κ), i(f)(κ) = j(f)(κ) = x and

i(κ) > λ. IfM ∈ Vj(κ), we can use elementarity to obtain an i′ with the same properties, but which
has its codomain in Vj(κ). Thus, we have a contradiction.

One easy corollary to the theorem is that if Eθ
κ is weakly compatible with the WA-embedding,

then Eθ
κ must be regular; this follows from the theorem and Proposition 4.15(3). A question that

naturally arises here is whether there can be a regular class that does not admit its own brand of
Laver sequence:

4.23 Open Question. Is it consistent5 with the existence of a strong cardinal for there to be a
regular class Eθ

κ for which there is no Eθ
κ-Laver sequence? If yes, is this consistent6 with WA? Is it

consistent under any hypothesis (at least the existence of a strong cardinal) that all regular classes
admit corresponding Laver sequences?

We pause here to consider an example that highlights an important caveat that must be
respected in dealing with classes of embeddings in the presence of WA.

4.24 Example. (A Paradoxical Class) Assume WA, and let j : V → V be the WA-embedding.
Let E = {jm |\ Vjn(κ) : m,n ≥ 1}. It is clear that for each λ > κ there is β > λ and i : Vβ → M ∈ E
such that i(κ) > λ and Vλ ⊂ M . It is also clear that E is compatible with j. However, E does not
admit an E-Laver sequence; indeed, for any g : κ → Vκ, if x = j(g)(κ), then, as one easily verifies,
for all i ∈ E , i(g)(κ) = x. This result apparently contradicts Theorem 4.22.

The paradox is resolved by observing that there is no suitable formula θ which defines E (for,
if there were such a θ(x, y, z, w), we could let ψ(x, y) be the ∈-formula

“y is of least rank such that, for some β, i,M , θ(i, κ, β,M) ∧ (x, y) ∈ Vβ ∧ i(x) = y”.

Then if j : V → V is the WA-embedding, for all x, y, j(x) = y iff ψ(x, y)). The moral is that, in
devising examples of regular classes, we must exercise care not to use j-formulas. More generally,

5In [9] it is shown that, assuming there is a strong cardinal κ with an inaccessible above, there
is a forcing extension in which κ is still strong and there is a regular class of embeddings with no
corresponding Laver sequnce.

6In [8] it is shown that, assuming the consistency of an I1 embedding, there is a forcing
extension in which WA holds and there is a regular class with no corresponding Laver sequence.
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the example illustrates the importance of checking that a class E can be defined by a suitable
formula. A less contrived example of the need for care in this regard comes up in Example 7.3(3).

Returning to ramifications of Theorem 4.22, we can generalize the equivalence relation men-
tioned in the remarks following Proposition 4.8 to the present context: Define ∼θ

L over Eθ
κ-Laver

sequences as in (4.3) by f ∼θ
L g iff for all i ∈ Eθ

κ, i(f)(κ) = i(g)(κ); our arguments in the remarks
following Proposition 4.8 still go through, mutatis mutandis, in this general case, showing that
there must be 2κ ∼θ

L-equivalence classes, each containing 2
κ elements.

We note also that, as in Theorem 4.4, we can ensure that the functions α �→ |f(α)| and
α �→ rank(f(α)), where f is a Eθ

κ-Laver sequence obtained in CC(t, Eθ
κ), dominate, on D-measure 1

sets, the functions κ → κ definable in Vκ. We can also generalize the notion of special Laver
sequences and prove their existence under the hypotheses of Theorem 4.22. Since we are using ranks
instead of transitive closures in our general notion of Laver sequences, we will actually generalize
the notion of special∗ Laver sequences, as defined immediately after Definition 4.5.

4.25 Definition. (Special Eθ
κ-Laver sequences.) An Eθ

κ-Laver sequence g : κ → Vκ is special if
there exist λ, β, i : Vβ → M ∈ Eθ

κ, such that κ < λ < β, λ is a beth fixed point, and

(1) M is λ-closed;
(2) rank(i(g)(κ)) < λ < i(κ);
(3) if D is the normal ultrafilter over κ derived from i, then for each h : κ → κ definable in Vκ,

the function α �→ rank(g(α)) dominates h on a set in D.

Proposition 4.32 below shows that this definition agrees with the definition of special∗ in the
case that Eθ

κ is the class of embeddings corresponding to a supercompact cardinal (for a definition
of this class, see the discussion following Definition 4.28). In Section 7, we show, as in Theorem 4.9,
that the existence of special Eθ

κ-Laver sequences is generally quite strong: If there exists a special
Eθ
κ-Laver sequence, and if the embeddings in Eθ

κ have “sufficiently many” extensions, it is consistent
for κ to be the κth extendible cardinal (Theorem 7.17).

The next two results show that if a class Eθ
κ is weakly compatible with the WA embedding and

satisfies a reasonable closure condition, there must exist a special Eθ
κ-Laver sequence. This result

is a generalization of part (3) of Theorem 4.4. In Corollary 4.35, we apply Corollary 4.27 to show
that, assuming WA, whenever Eθ

κ corresponds to one of the familiar globally defined large cardinals,
there must exist a special Eθ

κ-Laver sequence.

4.26 Proposition. Suppose θ is suitable. Suppose that for each t : κ → Vκ, if f = ft is the

function obtained from CC(t, Eθ
κ), there are λ,D, i : Vβ → M ∈ Eθ

κ such that λ is a beth fixed

point, D is the normal ultrafilter over κ derived from i, and

(1) M is λ-closed;

(2) rank(i(f)(κ)) < λ < i(κ);
(3) for each h : κ → κ definable in Vκ, if Xh = {α < κ : rank(f(α)) > h(α)}, Xh ∈ D;

(4) f is Eθ
κ-Laver at κ.
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Then t can be chosen so that f is a special Eθ
κ-Laver sequence.

Proof. Immediate.

Suppose λ is a cardinal and θ is suitable. We will say that Eθ
κ is upward λ-closed if for each

β ∈ Dom Eθ
κ for which β > λ and each i : Vβ → M ∈ Eθ

κ, we have i(κ) ≥ λ and M is λ-closed
(recall Definition 2.25).

4.27 Corollary. AssumeWA and let j denote theWA-embedding and κ its critical point. Suppose
θ is suitable and Eθ

κ is weakly compatible with j. Assume either of the following:

(A) The set {β < j(κ) : j |\ Vβ ∈ Eθ
κ} is unbounded in j(κ)

(B) Eθ
κ is upward λ-closed for every cardinal λ < j(κ).

Then the parameter t in the construction CC(t, Eθ
κ) can be chosen so that the constructed function

f is a special Eθ
κ-Laver sequence.

Proof. We apply Proposition 4.26. Let t : κ → Vκ. By Theorem 4.22 and the fact that Eθ
κ is weakly

compatible with j, the function f obtained from CC(t, Eθ
κ) must be Eθ

κ-Laver; this establishes (4) of
Proposition 4.26. Moreover, by the proof of Theorem 4.22, the set {α < κ : f |\ α is Eθ

κ-Laver at α}
is in D, where D is the normal ultrafilter over κ derived from j. Let 〈hδ : δ < κ〉 be an enumeration
of the functions definable (with parameters) in Vκ, and for each δ, let Xδ = {α < κ : rank(f(α)) >
h(α)}; then Xδ ∈ D. Let r : κ → P (κ) : δ �→ Xδ. Let λ be a beth fixed point such that
rank(j(f)(κ)) < λ < j(κ). To complete the proof, we obtain i ∈ Eθ

κ so that

(a) the codomain of i is λ-closed;
(b) i(f)(κ) = j(f)(κ);
(c) i(κ) > λ;
(d) if Di is the normal ultrafilter derived from i, then r(δ) ∈ Di for each δ < κ.

Assuming (A), pick β so that λ < β < j(κ) and j |\ Vβ : Vβ → Vj(β) ∈ Eθ
κ. We let i = j |\ Vβ .

Clearly (a) - (d) are satisfied.
Assuming (B), pick witnesses β and i : Vβ → M ∈ Eθ

κ to weak compatibility with j, where β
and i are obtained on the basis of the parameters f, λ, and r. Parts (b) - (d) follow immediately
from the properties of i guaranteed by weak compatibility. Finally, part (a) follows from the fact
that Eθ

κ is upward λ-closed.

We turn to the task of verifying that each of the most familiar globally defined large cardinals
can be defined in terms of a regular class of embeddings that is compatible (or weakly compatible)
with the WA-embedding j. As a first step, it will be convenient to isolate a property that tells us
that a regular class Eθ

κ is “derived from” some large cardinal property A(κ). In the definition, by a
“large cardinal property”, we mean a property A(x) such that the sentence ∀α (“α is an ordinal” ∧
A(α) =⇒ Vα |= ZFC) holds in some transitive model of set theory

4.28 Definition. Suppose A(x) is a large cardinal property and θ is a suitable formula. We shall
call A(x) a normal property with suitable formula θ if for each ordinal α we have the following:
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(1) A(α)⇐⇒ ∀γ > α ∃β ≥ γ ∃i∃Mθ(i, α, β,M); and

(2) A(α) =⇒ Eθ
α is a regular class.

If, for each ordinal α, we have

A(α) =⇒ “there is an Eθ
α-Laver sequence at α”,

we will call A(x) Laver-generating.

If A(x) is normal with suitable formula θ, we may informally call Eθ
κ a normal class, or state

that Eθ
κ is Laver-generating. The first of these should be understood to mean “A(x) is normal;”

the second means “A(x) is Laver-generating.”

4.29 Proposition. Suppose A(x) is a normal large cardinal property with suitable formula θ.

Then for each ordinal α, if Eθ
α is regular, then A(α) holds.

Proof. Notice that regularity of Eθ
α implies the right-hand side of Definition 4.28(1); by normality

of A(x), the result follows.

We proceed to show that a number of large cardinals are normal. We begin by defining the
corresponding suitable formulas:

θsc(i, κ, β,M): ∃λ > κ [M is transitive∧β = λ + ω ∧ i : Vβ → M is an elementary
embedding with critical point κ ∧ i(κ) > λ ∧ ∀f : λ → M [∃x ∈
M (range(f) ⊆ x) =⇒ f ∈ M ]].

θstr(i, κ, β,M): ∃λ > κ [M is transitive∧β = λ + ω ∧ i : Vβ → M is an elementary
embedding with critical point κ ∧ i(κ) > λ ∧ Vλ ⊆ M ].

θext(i, κ, β,M): ∃δ > 0∃ζ [β = κ+δ ∧ M = Vζ ∧ i : Vβ → M is elementary with critical
point κ ∧ β < i(κ) < ζ].

θsh(i, κ, β,M): ∃λ > κ [M is transitive ∧λ is inaccessible ∧β = λ+ ω ∧ i : Vβ → M

is elementary with critical point κ ∧ i(κ) = λ ∧ ∀f : λ → M ∀x ∈
M (range(f) ⊆ x =⇒ f ∈ M)].

θsah(i, κ, β,M): ∃λ > κ [M is transitive ∧λ is inaccessible ∧β = λ+ω ∧ i : Vβ → M is
elementary with critical point κ ∧ i(κ) = λ ∧ ∀µ(κ ≤ µ < λ)∀f : µ →
M ∀x ∈ M (range(f) ⊆ x =⇒ f ∈ M)].

It is easy to verify that the formulas given above are all suitable; Theorem 4.30 shows that they
witness the normality of the large cardinals under consideration. We adopt the following notational
convention: we shall write Ez

κ instead of Eθz
κ for each z ∈ {sc, ext, sh, sah, str}.

4.30 Theorem. Each of the large cardinal properties “supercompact”, “strong”, “extendible”,
“superhuge”, and “super-almost-huge” is normal, and each corresponding class Eθ

κ is correlated.

Proof. Esc
κ : For part (1) of Definition 4.28, suppose κ is supercompact and γ > κ; let λ ≥ γ and

let β = λ + ω. Let î : V → M̂ be such that cp(̂i) = κ, î(κ) > λ, and λM̂ ⊆ M̂. Let i = î |\ Vβ
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and M = V M̂
î(β)
. Now, given f : λ → M and x ∈ M such that range(f) ⊆ x, note that f ∈ M̂ and

f ⊆ λ× x ∈ Vî(β); thus f ∈ M. Conversely, assume the condition holds, and let λ > κ, β = λ+ ω,
and i : Vβ → M satisfy θsc(i, κ, β,M). Define U over Pκλ by putting X ∈ U iff i′′λ ∈ i(X). Note
that the definition makes sense since i′′λ ⊆ i(λ) ∈ M, i(κ) > λ, and PPκλ ⊆ Vβ ; thus, U witnesses
λ-supercompactness of κ.

For part (2), we show that Esc
κ is a regular class. Given γ > κ, let î : V → M̂ be a supercompact

embedding such that Vγ ⊂ M̂ and î(κ) > γ. Let λ = γ, β = λ+ω, and i = î |\ Vβ : Vβ → V M̂
î(β)

=M .
Then (i,M) ∈ Esc

κ , i(κ) > γ, and and Vγ ⊂ M .
Finally, to see that Esc

κ is correlated, define F on Dom Esc
κ by letting F(β) = the largest limit

ordinal < β; since each β ∈ Dom Esc
κ is of the form λ+ ω for some λ, the definition makes sense;

it is easy to check that F has the required properties.

Estr
κ : For part (1), suppose κ is strong and let γ > κ, λ > γ, and β = λ+ ω. Let î : V → M̂ be

an embedding with i(κ) > λ and Vλ ⊆ M . If we let i = î |\ Vβ and M = V M̂
î(β)

, then i, κ, β,M satisfy
θstr(i, κ, β,M). Conversely, assuming the condition and given λ > κ, we show that κ is λ-strong.
Let γ ≥ λ+ ω + ω. Let β ≥ γ and let i be such that θ(i, κ, β); in particular, for some limit ordinal
λ′ > λ, β = λ′+ω, i : Vβ → M has critical point κ, Vλ′ ⊂ M , and i(κ) > λ′. Let E be the extender
with support Vλ′ derived from i. Note that for each a ∈ <ω[Vλ′ ], i−1 |\ i(a) ∈ M , and since λ′ is a
limit, P (aVκ) ∈ Vλ′ . Thus, for each a, Ea ∈ Vλ′ , and E is well-defined. But now iE(κ) ≥ λ′ > λ

and so iE is the required λ-strong embedding. Finally, reason as in the supercompact case to show
that Estr

κ is regular and correlated.

Eext
κ : Normality is obvious; note that in this case, β is an extraneous variable in θext. To show

Eext
κ is correlated, let F be the identity.

Esh
κ : For part (1), suppose κ is superhuge. Let γ > κ and let î : V → M̂ be a huge embedding

with critical point κ and î(κ) > γ. Let λ = î(κ), β = λ + ω, i = î |\ Vβ and M = V M̂
î(β)

. Again, if

f : λ → M and x ∈ M with range(f) ⊆ x, then f ∈ M̂ by M̂ ’s closure property, and as f ⊆ λ× x,

f ∈ Vi(β); thus f ∈ M . Conversely, assume the condition holds and let γ > κ. Let β and i : Vβ → M

satisfy θsh(i, κ, β,M) with witness λ > γ (so that β = λ + ω). Define an ultrafilter U over P (λ)
by X ∈ U iff i′′λ ∈ i(X). The definition makes sense since i′′λ ∈ M and PP (λ) ⊆ Vβ . U is a huge
ultrafilter over κ since {X ⊆ P (λ) : ot(X) = κ} ∈ U. Since λ is an arbitrarily large target, κ is
superhuge. Finally, one proves that Esh

κ is regular and correlated as in the supercompact case.

Esah
κ : The forward direction for part (1) of the definition is like the proof for superhuge

cardinals. For the other direction, let γ > κ, and let β, i : Vβ → M satisfy θ(i, κ, β,M) with
witness λ > γ. For each η, κ ≤ η < λ, let Uη = {X ⊆ Pκη : i′′η ∈ i(X)}. Now 〈Uη : κ ≤ η < λ〉
is coherent and satisfies B(κ, λ) (see Section 2). Thus, κ is almost huge with target λ; since λ

was chosen arbitrarily large, we conclude that κ is super-almost-huge. Finally, prove that Esah
κ is

regular and correlated as in the supercompact case.

As an application of these techniques, one can verify that our new notion of Eθ
κ-Laver sequences

coincides with Laver’s original notion in the case of a supercompact:
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4.31 Proposition. Suppose κ is an infinite cardinal and g : κ → Vκ is a function. Then g is a

Laver sequence at κ if and only if g is Esc
κ -Laver at κ.

We can now show, as promised earlier, that the notion of a special∗ Laver sequence (for
supercompact cardinals) coincides with the notion of a special Esc

κ -Laver sequence:

4.32 Proposition. Suppose g : κ → Vκ. Then g is a special∗ Laver sequence if and only if g is a
special Esc

κ -Laver sequence.

Proof. Suppose g is special∗ with witnesses λ,U,D. Let β = λ+ω and let i : Vβ → M be iU |\ Vβ .
Properties (1) - (3) of Definition 4.25 are easily verified.

Conversely, assume g is a special Esc
κ -Laver sequence with witnesses λ, β, i : Vβ → M , and

D. Since M is λ-closed, i′′λ ∈ M . Thus we can define U over Pκλ from i in the usual way. By
Lemma 2.26(II), iU (g)(κ) = i(g)(κ); also, rank(iU (g)(κ)) < λ. Finally, by the usual arguments
(see Theorem 4.4(3)), one shows that D is the normal ultrafilter derived from iU .

To conclude this section, we observe that the five large cardinal notions treated in Theorem 4.30
are weakly compatible with the WA-embedding j. As the referee points out, because of the way we
defined the classes Eθ

κ, for θ ∈ {θsc, θstr, θext}, they happen to contain j |\ Vβ whenever β ∈ Dom Eθ
κ;

thus, it is easy to show that these classes are compatible (not just weakly compatible) with j: Given
λ, κ < λ < j(κ), we can find β such that λ < β < j(κ) for which β ∈ Dom Eθ

κ. Then j |\ Vβ ∈ Eθ
κ

witnesses compatiblity.
However, neither Esah

κ nor Esh
κ has this property; indeed, the only restrictions of j that are in

these classes are of the form jn |\ Vλ+ω where λ = jn(κ), and such restrictions cannot be used to
verify compatibility (though they can be used for weak compatibility). At this time we do not know
whether Esh

κ is compatible with j, but we can show that it is weakly compatible. We reserve the
somewhat complicated proof that Esah

κ is compatible with j for the next section (Theorem 5.20); for
now, since Esh

κ ⊂ Esah
κ , Esah

κ inherits weak compatibility. We turn to the proof of weak compatibility
of Esh

κ :
Given κ < λ < j(κ), g : κ → Vκ with rank(j(g)(κ)) < λ, x = j(g)(κ), and r : κ → P (κ), let D

be the normal ultrafilter over κ derived from j and let β = j(κ)+ω. Clearly, j |\ Vβ → Vj(β) ∈ Esh
κ .

Thus,

Vj3(κ) |= ∃i∃M [
i : Vβ → M ∈ Esh

κ ∧ i(κ) > λ ∧ i(g)(κ) = x∧
∀δ < κ (r(δ) ∈ D) ∧ “D is the normal measure on κ derived from i”

]
Note that the parameters β,D, λ, g, κ, x, r of the displayed formula all lie in Vj2(κ). Thus, since

Vj2(κ) ≺ Vj3(κ) the same formula holds in Vj2(κ). It follows that

Vj2(κ) |= ∃i∃M ∃β ∃D [
i : Vβ → M ∈ Esh

κ ∧ i(κ) > λ ∧ i(g)(κ) = x∧
∀δ < κ (r(δ) ∈ D) ∧ “D is the normal measure on κ derived from i”

]
Since the parameters λ, g, κ, x, r of the displayed formula all lie in Vj(κ), the same formula holds
in Vj(κ); let i : Vβ → M ∈ (Esh

κ

)Vj(κ) and Di be witnesses. It is easy to verify that
(Esh

κ

)Vj(κ) =
Esh
κ ∩ Vj(κ). Properties (1) - (3) of weak compatibility follow immediately.
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The next theorem sums up the work in the previous paragraphs:

4.33 Theorem. Assume WA, and let j be the WA-embedding with critical point κ.

(1) If θ ∈ {θsc, θstr, θext}, then for each β ∈ Dom Eθ
κ, j |\ Vβ ∈ Eθ

κ. Thus, for such θ, Eθ
κ is

compatible with j.

(2) Both Esah
κ and Esh

κ are weakly compatible with j.

4.34 Open Question. Assuming WA, is Esh
κ compatible with the WA-embedding?

4.35 Corollary. Assume WA and let j be the WA-embedding with critical point κ. For θ ∈
{θsc, θstr , θext, θsah, θsh}, the parameter t in the construction CC(t, Eθ

κ) can be chosen so that the
constructed function f is a special Eθ

κ-Laver sequence.

Proof. For θ ∈ {θsc, θstr, θext}, this follows from Theorem 4.33(1) and Corollary 4.27(A). For
θ ∈ {θsah, θsh}, the result follows from Theorem 4.33(2), Corollary 4.27(B), and the fact that Eθ

κ is
upward λ-closed for every cardinal λ < j(κ).

Though we will not need to do so in this paper, it is sometimes useful to use a different suitable
formula in defining a regular class that corresponds to a particular large cardinal, especially when
the large cardinal is definable in terms of ultrafilters or extenders. Using the ultrafilter/extender
definitions for supercompact, strong, super-almost-huge, and huge cardinals, one can obtain suitable
formulas θ′sc, θ

′
str , θ

′
sah, and θ′sh so that normality of these large cardinal properties is witnessed by

these formulas, and the resulting regular classes Eθ′
κ are (at least) weakly compatible with the

WA-embedding j; moreover, none of these classes contains a restriction of j.
We give an example for the supercompact case. Define θ′sc by:

θ′sc(i, κ, β,M): ∃λ > κ∃U ∃γ ∃j ∃N [β = λ+ω ∧U is a normal ultrafilter over Pκλ∧ γ is
a regular cardinal > 2λ

<κ ∧N is the transitive collapse of the ultrapower
V Pκλ
γ /U ∧ j : Vγ → N is the canonical embedding ∧ i = j |\ Vβ ∧ M =

V N
j(β)].

Now if κ is supercompact, Esc′
κ is a regular subclass of Esc

κ , and if WA holds, Esc′
κ is compatible

with the WA-embedding j: Given κ < λ < j(κ), let λ′ = |Vλ| and β = λ′+ω. Let U be the normal
ultrafilter over Pκλ

′ derived from j. Let î : V → M̂ be the canonical embedding, and let k̂ :M → V

be the usual embedding for which k̂ ◦ î = j. As usual, î(κ) > λ, Vλ ⊆ M̂ , and k̂ |\ Vλ = idVλ
. Thus

the required maps are given by i = î |\ Vβ : Vβ → M and k = k̂ |\ M :M → Vj(β), whereM = V M̂
î(β)
.

§5. Laver Sequences Under Weaker Hypotheses

In this section, we wish to obtain results as in the last section concerning the existence of
Eθ
κ-Laver sequences for various θ, but with weaker hypotheses than WA. It is reasonable to try
replacing the WA-embedding with some weaker kind of embedding j : V → N . When we do this,
we are immediately faced with several hurdles.
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Hurdle #1. We would like to guarantee that in the canonical construction of the function f , for
any α < κ, if f |\ α fails to be Eθ

α-Laver, then there is a witness x ∈ Vκ. When we assumed WA,
this was easily accomplished by using the fact that Vκ ≺ V.

Hurdle #2. Let D be the normal ultrafilter over κ derived from j. We wish to guarantee that
{α < κ : f |\ α is Eθ

α-Laver} ∈ D; in other words, we need to obtain a contradiction from the
assumption that, in N , j(f)(κ) is a witness to the failure of f to be Eθ

κ-Laver. In the case of WA,
this was done by showing that there was an i ∈ Eθ

κ weakly compatible with j and concluding that
i(f)(κ) = j(f)(κ).

Hurdle #3. If we can show that {α < κ : f |\ α is Eθ
α-Laver} ∈ D, we will be able to conclude only

that f is Eθ
κ-Laver in N , and since Laverness is not absolute, some other technique will be needed

to conclude that f is really Eθ
κ-Laver. Of course, none of this is a problem under WA since N = V .

We attempt to surmount these hurdles in a straightforward way. We will approach Hurdle #1
by trying to prove directly that witnesses to Laver failures can always be found in Vκ if we start
with a strong enough embedding j : V → N . We will attack Hurdle #2 by trying to find in N ,
directly, an i ∈ Eθ

κ that is weakly compatible with j : V → N . To handle Hurdle #3, we try a less
direct approach: We try to show that, given a superstrong embedding j : V → N , if f is Eθ

κ-Laver
in N , then this fact holds in Vj(κ) = V N

j(κ). Thus, if we assume that f fails to be Eθ
κ-Laver with

witness x, and we are able to pick j : V → N with target > rank(x), then we can use this reflection
property to obtain a contradiction inside Vj(κ).

Theorem 5.13 shows that if we surmount the three hurdles as we have suggested, then f is
indeed Eθ

κ-Laver. Theorem 5.38 shows that each of these hurdles can be overcome for each of the
five large cardinal classes we have been considering, all under reasonable hypotheses. Theorem 5.37
provides sufficient abstract conditions on a class Eθ for these hurdles to be overcome.

Section 6 will show that it isn’t necessary to handle all the hurdles mentioned here in order to
obtain Laver sequences for each of the five large cardinal classes; however, to arrive at this result,
we will need to modify our construction somewhat.

To conclude this preliminary discussion, we remark that our commitment to handle Hurdle
#2 in the way we have described — by ensuring that

(5.1) {α < κ : f |\ α is Eθ
α-Laver} ∈ D,

where D is derived from the ambient embedding — accomplishes two things: On the one hand, it
ensures that Eθ

κ-Laver sequence f that is obtained must agree with the parameter t : κ → Vκ on a
normal measure 1 set (and in most cases, guarantees that f is special). It also limits our ability
to obtain optimal hypotheses under which Laver sequences for various classes Eθ

κ can be proven to
exist. This latter remark follows because (5.1) implies that the α < κ for which Eθ

α is regular have
normal measure 1, a consequence that is much stronger than simply the fact that Eθ

κ is regular.
The contrast is more apparent in the case in which A(x) is a normal large cardinal property with
suitable formula θ; in that case, by Proposition 4.29, the statement (5.1) implies that the α < κ

for which A(α) holds forms a normal measure 1 set. See the discussion at the end of Section 6.
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We turn to some definitions en route to a precise formulation of the three conditions mentioned
above. We begin with observations about the construction of a class Eθ

κ inside a rank Vρ. If ρ > κ

is a limit ordinal, it is easy to verify that for θ ∈ {θsc, θstr , θext, θsah, θsh}, θVρ(i, κ, β,M) ⇐⇒
θ(i, κ, β,M), and hence

(Eθ
κ

)Vρ = Eθ
κ ∩ Vρ. (Note that for this observation to hold true, it is not

enough for members of the classes Eθ
κ to be simply elementary embeddings; their codomains must

be included too (see the remarks following Definition 4.12).) For general θ, however, there is no
guarantee of absoluteness.

5.1 Definition. (Adequate Absoluteness) Suppose θ is a suitable formula. We will call θ adequately
absolute if for all beth fixed points ρ and all i, κ, β,M ∈ Vρ, we have

θVρ(i, κ, β,M) ⇐⇒ θ(i, κ, β,M).

For each θ, the sentence that asserts that θ is adequately absolute can be expressed formally
as follows:

aθ : ∀ρ ∈ BF ∀i, κ, β,M ∈ Vρ

(
θ(i, κ, β,M)⇐⇒ θVρ(i, κ, β,M)

)
,

where BF is the class of all beth fixed points.

The next lemma describes two useful consequences of adequate absoluteness:

5.2 Lemma. Suppose θ is adequately absolute.

(1) If j : V → N is an elementary embedding, then, in N , θ is adequately absolute.

(2) θ is ΣZFC+aθ
2 .

Proof of (1). Because j is elementary, V and N are elementarily equivalent.

Proof of (2). It suffices to show—in the theory ZFC+ aθ—that θ is a local property. Let σ be a
beth fixed point sentence (see the beginning of Section 2), and let ψ(x, y, z, w) ≡ θ(x, y, z, w) ∧ σ.
We prove θ(x, y, z, w)⇐⇒ ∃δ Vδ |= ψ(x, y, z, w).

For one direction, if θ(i, κ, β,M) holds and δ is a beth fixed point larger than the ranks of θ’s
parameters, then Vδ |= σ, and by adequate absoluteness, Vδ |= θ[i, κ, β,M ]. For the other direction,
given a δ such that Vδ |= ψ[i, κ, β,M ], δ must be a beth fixed point and so, by adequate absoluteness
again, θ(i, κ, β,M) must be true (in V ).

Next we consider the notion of Laver-closure, which will prove useful in establishing absolute-
ness properties in some cases. We begin with two preliminary definitions. Suppose Eθ

κ is regular
and λ < ρ are ordinals. We will say that Eθ

κ has a representative β in (λ, ρ) if λ < β < ρ and
β ∈ Dom Eθ

κ. Also, for any i ∈ Eθ
κ, any function g : κ → Vκ, any ordinal λ > κ and any x ∈ Vλ, we

will say that i has Laver-like values with respect to κ, λ, x, g if i(κ) > λ and i(g)(κ) = x.

5.3 Definition. (Laver-closed Classes) Suppose C is a class of cardinals. Suppose θ is a suitable
formula. The class Eθ

κ will be called Laver-closed over C if for all g : κ → Vκ and all λ, ρ, x where
λ is a limit ordinal, ρ ∈ C, x ∈ Vλ, and λ < ρ, if Eθ

κ has a representative in (λ, ρ), then Eθ
κ has
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a representative β0 in (λ, ρ) such that whenever β0 ≤ β < ρ and i : Vβ → M ∈ Eθ
κ has Laver-

like values with respect to κ, λ, x, g, then there is j : Vβ → N ∈ Eθ
κ such that j has Laver-like

values with respect to κ, λ, x, g and (j,N) ∈ Vρ. The ordinal β0 will be called a witness to Laver-
closure (over C) relative to λ, ρ. If Eθ

κ is Laver-closed over C, we define a partial function Ic on
{(λ, ρ) : λ < ρ, λ is a limit ordinal, and ρ ∈C} by

Ic(λ, ρ) =

{
β0 if there is a witness to Laver-closure relative to λ, ρ

and β0 is the least such
undefined otherwise.

The ordinal Ic(λ, ρ) (if defined) is called the Laver-closure index for Eθ
κ at (λ, ρ) over C. Eθ

κ will
be called simply Laver-closed if, whenever Ic(λ, ρ) is defined, Ic(λ, ρ) is the least β > λ lying in
Dom Eθ

κ.

The classes C that will concern us in this paper in applications of Definition 5.3 will be the
beth fixed points and the inaccessibles; if Eθ

κ is Laver-closed over one of these classes, we will say
that it is Laver-closed at beth fixed points or Laver-closed at inaccessibles. Note that the criterion
given in the previous definition involves all functions κ → Vκ, and not just those that happen to
be Laver functions.

In the definition, we have required λ to be a limit ordinal in order to avoid certain technical
inconveniences. However, by Proposition 4.15(2), restricting to limit ordinals does not restrict the
applicability of Laver-closure.

As we shall see shortly, our main examples of Laver-closed classes will be simply Laver-closed,
with the exception of Esc

κ ; because this class does not have the convenient feature that for β =
λ+ ω ∈ Dom Eθ

κ, Vλ is a subset of the codomain of embeddings with domain Vβ , we have allowed,
in the definition, some flexibility in the possible values for the Laver-closure index.

One consequence of Laver-closure at beth fixed points that we will not need in this paper, but
that is quite useful is the following: Suppose α ≤ κ, and j : V → N is a superstrong embedding
with critical point κ. Suppose θ is adequately absolute and Eθ

α is Laver-closed at beth fixed points.
Then Dom Eθ

α ∩ j(κ) ⊆ (
Dom Eθ

α

)N ∩ j(κ).
The next proposition puts together the last two definitions in a way that will be useful for a

number of results in this section; the proof is easy and we omit it.

5.4 Proposition. Suppose θ is a suitable formula that is adequately absolute. Suppose κ < λ < ρ

and ρ is a beth fixed point. Suppose g : κ → Vκ is a function, x ∈ Vλ, and β < ρ. Then (1)⇒ (2),
where:

(1) ∃i : Vβ → M [(i,M) ∈ Vρ ∧ Vρ |= (i,M) ∈ Eθ
κ ∧ i(κ) > λ ∧ i(g)(κ) = x];

(2) ∃i : Vβ → M [(i,M) ∈ Eθ
κ ∧ i(κ) > λ ∧ i(g)(κ) = x].

Moreover, if Eθ
κ is Laver-closed over C ⊆ {α : α is a beth fixed point}, ρ ∈ C, λ is a limit, and

Ic(λ, ρ) ≤ β, then (2) implies (1) as well.

As the next proposition shows, most of the classes of embeddings we are considering are Laver-
closed at beth fixed points:
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5.5 Proposition. For all θ ∈ {θsc, θstr, θsah, θsh}, Eθ
κ is Laver-closed at beth fixed points; indeed,

with the exception of Esc
κ , each of these classes is simply Laver-closed at beth fixed points.

Proof. Let κ < λ < ρ and assume that ρ is a beth fixed point. If θ = θsc, let β0 = |Vλ| + ω. For
θ = θstr, θsah, and θsh, we let β0 be least such that β0 > λ and β0 ∈ Dom Eθ

κ. Let g : κ → Vκ

and x ∈ Vλ be given. Let β be such that β0 ≤ β < ρ and β ∈ Dom Eθ
κ, and assume that for some

i : Vβ → M , with (i,M) ∈ Eθ
κ, i has Laver-like values with respect to κ, λ, x, g. For each case we

obtain j : Vβ → N with (j,N) ∈ Eθ
κ ∩ Vρ for which j(κ) > λ and j(g)(κ) = x.

For θ = θsc, let U be the normal ultrafilter over Pκ|Vλ| derived from i and let j = iU |\ Vβ :
Vβ → N . Now (j,N) ∈ Esc

κ , j(κ) > λ, and by Lemma 2.26, j(g)(κ) = x. By Proposition 2.28(A,3),
(j,N) ∈ Vρ.

For θ = θstr, let E be the extender with critical point κ and support Vλ. If iE(κ) > λ, then
let j = iE |\ Vβ : Vβ → N . If iE(κ) = λ, then let j = î |\ Vβ : Vβ → N , where î = (iE · iE) ◦ iE (see
the remarks following Definition 2.16). In either case, (j,N) ∈ Estr

κ and j(κ) > λ. In the first case,
we can use Lemma 2.26(II) to conclude that j(g)(κ) = x and Proposition 2.28(B,3) to conclude
(j,N) ∈ Vρ. A bit more work is required to get these last two results for the second case. To see
j(g)(κ) = x, we perform a computation:

j(g)(κ) = [(iE · iE)(iE(g))](κ)
= [(iE · iE)(iE(g))][(iE · iE)(κ)]
= (iE · iE)[iE(g)(κ)]
= (iE · iE)(x)
= x.

The last equality follows since x ∈ Vλ and cp(iE · iE) = λ in this case.
To see that (j,N) ∈ Vρ, we perform a computation in the codomain M̃ of iE that is similar

to the one in Proposition 2.28(B). Write iE : V → M̃ and iE · iE : M̃ → M̃1. Then iE · iE is the
canonical embedding of M̃ into its ultrapower M̃1 formed by the M̃ -extender Ẽ = iE(E) ∈ M̃ .
Reasoning as in Proposition 2.28(B), we can show in M̃ that

iE · iE(iE(β)) <
(| ∑

|ViE(λ)|
iE(β)iE(κ)|)+

.

Evaluating the sizes of ViE(λ), iE(β), iE(κ) in V (again reasoning as in Proposition 2.28) shows
that each has (real) cardinality < ρ. It follows that

max(rank(j |\ Vβ), rank(N)) < [(iE · iE) ◦ iE ](β) + ω

< ρ,

whence (j,N) ∈ Vρ.

For θ = θsah, let λ̂ = i(κ). Then λ < λ̂ < λ̂ + ω = β. Obtain from i a coherent sequence
〈Uη : κ ≤ η < λ̂〉 of normal ultrafilters satisfying B(κ, λ̂). Let î be the a.h. embedding with target
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λ̂ obtained from this sequence. Let j = î |\ Vβ : Vβ → N . Now (j,N) ∈ Esah
κ , j(κ) = λ̂ > λ, and

j(g)(κ) = x, by Lemma 2.26(II). The fact that (j,N) ∈ Vρ follows from Proposition 2.28(C).
For θ = θsh, obtain j : Vβ → N , as in the supercompact case, from the normal ultrafilter (in

this case over P (λ)) derived from i. Now, as in the other cases, (j,N) ∈ Esh
κ , and j(κ) > λ; by

Lemma 2.26(II), j(g)(κ) = x; by Proposition 2.28(D,3), (j,N) ∈ Vρ.

Whether it is consistent for Eext
κ to be Laver-closed at inaccessibles (assuming κ is extendible)

is open.

5.6 Open Question. Is there a model7 of ZFC + “κ is extendible” in which Eext
κ is Laver-closed

at inaccessibles?

Another abstract property of classes of embeddings that we will often make use of is coherence:

5.7 Definition. (Coherence) Suppose β, γ ∈ Dom Eθ
κ and κ < β < γ. Then Eθ

κ is coherent at
(β, γ) if, for each i : Vγ → N ∈ Eθ

κ, the embedding i |\ Vβ is also in Eθ
κ. Eθ

κ is coherent if, for all
β, γ ∈ Dom Eθ

κ such that κ < β < γ, Eθ
κ is coherent at (β, γ).

5.8 Proposition. The classes Esc
κ , Estr

κ and Eext
κ are coherent.

Proof. For Eext
κ , this is obvious. We give the proof for Esc

κ ; the proof for Estr
κ is similar. Given

i : Vγ → N ∈ Eθ
κ and β ∈ Dom Esc

κ with β < γ, we need to verify that i |\ Vβ ∈ Esc
κ . Write

β = λ + ω. Note that i |\ Vβ : Vβ → V N
i(β) = M. It suffices to show that for each x ∈ M and each

g : λ → x, we have g ∈ M . But since i ∈ Esc
κ , we have g ∈ N , and clearly g ∈ Vi(β); the result

follows.

Note that neither Esah
κ nor Esh

κ is coherent. One of the useful features of coherent classes
Eθ
κ is that one can show a g : κ → Vκ is not Eθ

κ-Laver by exhibiting a witness x and a single
β > max(κ, rank(x)):

5.9 Proposition. Suppose θ is a suitable formula and Eθ
κ is a coherent class of embeddings.

Suppose that g : κ → Vκ is a function and that there are x, λ such that for some β, one of the

following holds:

(5.2)
λ > max(κ, rank(x))∧ β > λ ∧ β ∈ Dom Eθ

κ ∧
∀i : Vβ → M ∈ Eθ

κ [i(κ) > λ =⇒ i(g)(κ) = x];

(5.3) λ > max(κ, rank(x)) ∧ β > λ ∧ ∀β′ ≥ β (β′ ∈ Dom Eθ
κ).

Let λ′ ≥ β. Then x, λ′ witness that g is not Eθ
κ-Laver at κ. Moreoever, if (5.2) holds for β =

min{γ : γ > λ ∧ γ ∈ Dom Eθ
κ}, or if (5.3) holds for β = λ + 1, then x, λ witness that g is not

Eθ
κ-Laver at κ.

7In [9] it is shown that the answer is no.

66



Remark. When either (5.2) or (5.3) holds for x, λ, β, we will say that x, λ, β satisfy the coherence
criterion for Laver failure. If the “moreover” clause holds, we will say that x, λ, β satisfy the strong
coherence criterion for Laver failure.

Proof. Let λ′ ≥ β. Now λ′ > max(κ, rank(x)). If condition (5.3) holds, then the result follows
vacuously. Assume condition (5.2). Let β′ > λ′ with β′ ∈ Dom Eθ

κ. Suppose i : Vβ′ → M ∈ Eθ
κ and

i(κ) > λ′. By coherence, i |\ Vβ ∈ Eθ
κ, and clearly i(κ) > λ. By (5.2), i(g)(κ) = x. Thus g is not

Eθ
κ-Laver at κ, with witnesses x, λ′. Similar reasoning can be used to prove the “moreover” clause.

The case in Proposition 5.9 in which (5.3) holds clearly does not require the hypothesis that
Eθ
κ is coherent; we have included this case here because our applications of the proposition will
typically require consideration of both cases, (5.2) and (5.3).

We turn to a description of two concepts that are central to our proof of the existence of
Eθ
κ-Laver sequences under weaker hypotheses.

5.10 Definition. (Reflecting Laver Sequences) Suppose θ is a suitable formula, Eθ
κ is a class of

embeddings, and ρ > κ. Then Eθ
κ is Laver reflecting in Vρ if, whenever g : κ → Vκ is Eθ

κ-Laver at κ,
we have

Vρ |= “g is Eθ
κ-Laver at κ.”

In other words, Eθ
κ is Laver reflecting in Vρ if and only if for each g : κ → Vκ, the statement

“g is Eθ
κ-Laver at κ” is downward absolute for Vρ. We have avoided this terminology because the

conditions that we need in order to show that the canonically constructed f is Eθ
κ-Laver are close

to, but different from, the absoluteness of Eθ
κ-Laverness of f .

5.11 Definition. (Localized Laver Failures) Suppose θ is a suitable formula, Eθ
κ is a class of em-

beddings, and ρ > κ. Then Eθ
κ-Laver failures are localized below ρ if for each g : κ → Vκ,

g is not Eθ
κ-Laver at κ ⇐⇒ ∃x ∈ Vρ ∃λ < ρφ(g, x, λ).

Note that the only “localization” required by the above definition is with respect to the pair
(x, λ); in particular, the assertion that “g is not Eθ

κ-Laver at κ” is downward absolute for Vρ is not
enough to show that Eθ

κ-Laver failures are localized below ρ. To see the problem, suppose “g is not
Eθ
κ-Laver at κ” is downward absolute for Vρ and g is not in fact Eθ

κ-Laver. While it is true that there
are x, λ ∈ Vρ such that φVρ(g, x, λ), φ may not be absolute for Vρ, even if θ is adequately absolute;
indeed, there may be i : Vβ → M ∈ Eθ

κ, not in Vρ, for which i(κ) > λ and i(g)(κ) = x. The
required ingredients for ensuring the equivalence of these two concepts are adequate absoluteness,
Laver-closure, coherence, and unboundedness of Dom Eθ

κ in ρ:

5.12 Proposition. Suppose θ is adequately absolute and Eθ
κ is coherent and Laver-closed at inac-

cessibles. Suppose ρ > κ is inaccessible and Dom Eθ
κ is cofinal in ρ. Then TFAE:

(1) Eθ
κ-failures are localized below ρ;
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(2) for all g : κ → Vκ, the statement “g is not Eθ
κ-Laver at κ” is downward absolute for Vρ.

Proof. (1) ⇒ (2) follows from the fact that θ is adequately absolute. For (2) ⇒ (1), assume that
for all g, the statement “g is not Eθ

κ-Laver at κ” is downward absolute for Vρ and that g is not
Eθ
κ-Laver (in V ). By downward absoluteness (and adequate absoluteness), there are x, λ ∈ Vρ with

λ > max(κ, rank(x)) such that for all β, i for which λ < β < ρ and i : Vβ → M ∈ Eθ
κ ∩ Vρ, if

i(κ) > λ then i(g)(κ) = x. Without loss of generality, assume λ is a limit ordinal. Assume, by way
of contradiction, that for some j : Vγ → N ∈ Eθ

κ, we have i(κ) > λ and i(g)(κ) = x. Let β ∈ Dom Eθ
κ

be such that λ < Ic(λ, ρ) ≤ β < ρ, where Ic(λ, ρ) is the Laver-closure index for Eθ
κ at (λ, ρ); we

can find such a β because Dom Eθ
κ is cofinal in ρ. By coherence, i = j |\ Vβ : Vβ → M ∈ Eθ

κ.
However, (i,M) may not be in Vρ. Since Eθ

κ is Laver-closed at inaccessibles, ρ is inaccessible, and
β ≥ Ic(λ, ρ), we can find i′ : Vβ → M ′ ∈ Eθ

κ such that (i
′,M ′) ∈ Vρ, i′(κ) > λ, and i′(g)(κ) = x,

and we have a contradiction.

We are now ready to formulate the three conditions mentioned at the beginning of this section;
Theorem 5.13 shows that these three are sufficient to prove that f is Eθ

κ-Laver.

5.13 Theorem. Suppose Eθ
κ is a regular class, θ is adequately absolute, and κ is globally super-

strong. Let f : κ → Vκ be defined as in CC(t, Eθ
κ). Assume

(1) for all α < κ, Eθ
α-Laver failures are localized below κ.

Also, assume that, for each γ, there is a superstrong embedding j : V → N with critical point κ

such that j(κ) > γ and the following statements hold in N :

(2) ∀λ < j(κ)¬φ(f, j(f)(κ), λ);
(3) Eθ

κ is Laver-reflecting in Vj(κ).

Then f is Eθ
κ-Laver at κ. Moreover, for each such superstrong j, if D is the normal ultrafilter over

κ derived from j, then {α : f |\ α is Eθ
α-Laver at α} ∈ D.

Proof. To begin, note that (1) guarantees that f is well-defined. Suppose j : V → N is any super-
strong embedding with critical point κ, satisfying properties (2) and (3) above, and let D be the
normal ultrafilter over κ derived from j. Observe that, by the definition of f in Construction 4.21,
one of the following sets must be in D:

S1 =
{
α < κ : ∃λ < κφ(f |\ α, f(α), λ)

}
;

S2 =
{
α < κ : f |\ α is Eθ

α-Laver at α}.
Since f is well-defined (and since the non-cardinals below κ form a nonstationary set), S1

represents the only way that f |\ α could fail to be Eθ
α-Laver at α for all α in a set in D. However,

by (2), S1 ∈ D. It follows that S2 ∈ D (establishing the “moreover” clause). It follows that

N |= “f is Eθ
κ-Laver at κ.”
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However, “f is Eθ
κ-Laver at κ” is not generally absolute for such N . We “simulate” absoluteness

by making use of the fact that we can choose j so that it has arbitrarily large targets and still satisfies
(2) and (3). Thus, suppose f is not Eθ

κ-Laver at κ, and let x, λ be such that φ(f, x, λ). Now let
j : V → N be superstrong with critical point κ so that j(κ) > λ. As before,

N |= “f is Eθ
κ-Laver at κ.”

By (3),
Vj(κ) = V N

j(κ) |= “f is Eθ
κ-Laver at κ.”

But now, since θ is adequately absolute and j(κ) is a beth fixed point, we have, by Proposition 5.4,
that there are β, i such that λ < β < j(κ), i : Vβ → M ∈ Eθ

κ ∩Vj(κ), i(κ) > λ, and i(f)(κ) = x. But
this contradicts the fact that x, λ have been chosen so that φ(f, x, λ).

In Theorem 5.13, the fact that {α : f |\ α is Eθ
α-Laver at α} ∈ D whenever D is derived from

one of the superstrong embeddings satisfying (2) and (3) is significant: it will guarantee (as we
shall show) that for “typical” classes, the parameter t in the construction of f can be chosen so
that f is special.

We now describe conditions on classes Eθ
κ and embeddings j : V → N for which properties

(1)-(3) hold. We will use two strategies. One of these will use the fact that adequately absolute
formulas are ΣZFC+aθ

2 ; in the presence of a superstrong embedding, or an extendible cardinal κ,
there will be enough reflection to establish our results concerning these properties; Theorem 5.22
is an example of this approach. The other strategy will consist of isolating abstract properties of
classes Eθ

κ that suffice to establish the required property. The former approach provides more general
results and locks us into certain large cardinal hypotheses (e.g., existence of an extendible cardinal
or superstrong embedding), whereas the abstract approach leaves open the possibility of obtaining
the desired results for certain classes of embeddings under weaker hypotheses; Theorem 5.18 is an
example of this phenomenon.

We begin with two lemmas that provide tools for reflection arguments.

5.14 Lemma. Suppose θ is an adequately absolute suitable formula, α < κ, κ is a strong cardinal,

and g : α → Vα and r : α → P (α) are functions. Suppose x, λ are such that x ∈ Vλ ∈ Vκ.

Suppose there is i : Vβ → M ∈ Eθ
α having Laver-like values with respect to α, λ, x, g, and such

that, if D is the normal ultrafilter derived from i, then r(δ) ∈ D whenever δ < α. Then there is

ĩ : Vβ̃ → M̃ ∈ Eθ
α ∩ Vκ having Laver-like values with respect to α, λ, x, g, and such that, if D̃ is the

normal ultrafilter derived from ĩ, then r(δ) ∈ D̃ whenever δ < α.

Remark. Note that the lemma does not assert (or imply) that Eθ
α is Laver-closed over any C.

Proof. Assuming the hypotheses, the following holds (in V ):

(5.4)
∃i∃M ∃β ∃P ∃D [

i : Vβ → M ∈ Eθ
α ∧ i(g)(α) = x ∧ i(α) > λ ∧ P = P (α)∧

∀δ < α (r(δ) ∈ D) ∧ ∀X(X ∈ D ⇐⇒ X ∈ P ∧ α ∈ i(X))
]
.
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By Lemma 5.2(2) and the fact that the formula P = P (α) and the last ‘∀’-clause in (5.4) are ΠZFC
1 ,

it follows that (5.4) is ΣZFC+aθ
2 . Since κ is strong, and the parameters α, g, λ, r of (5.4) all lie in

Vκ, we can conclude as in Theorem 2.18(1) that (5.4) holds in Vκ; since θ is adequately absolute,
the result follows.

5.15 Lemma. If θ is adequately absolute and g : κ → Vκ is a function, then the statement

“g is Eθ
κ-Laver at κ” is Π

ZFC+aθ
3 .

Remark. We proved this result directly in the strong and supercompact cases in Corollary 2.33;
for the super-almost-huge and superhuge cases, a direct proof could also be obtained using the
observations in Remark 2.34.

Proof. Using Lemma 5.2(2) and the fact that θ = θ(x, y, z, w) is adequately absolute, we observe
that the formula ψ1(y, λ, u, g) defined below is ΣZFC+aθ

2 :

ψ1(y, λ, u, g) ≡ ∃x∃z∃w [
θ(x, y, z, w) ∧ x(y) > λ ∧ x(g)(y) = u

]
.

Thus the formula ψ2(y, g) below is ΠZFC+aθ
3 :

ψ2(y, g) ≡ ∀u∀λ (λ > max(y, rank(u)) =⇒ ψ1(y, λ, u, g)),

and it is easy to verify that ψ2(κ, g) is equivalent (in ZFC) to the statement “g is Eθ
κ-Laver at κ”.

The next theorem gives conditions for property (1) of Theorem 5.13 to hold. Theorem 5.18
arrives at the same result under weaker hypotheses, in special cases.

5.16 Theorem. Suppose κ is extendible or globally superstrong and θ is adequately absolute.

Then Eθ
α-Laver failures are localized below κ for all α < κ.

Proof. We begin with the case in which we assume κ is extendible. Suppose g : α → Vα is not
Eθ
α-Laver. Since θ is adequately absolute, it follows from Lemma 5.15 that the statement

(5.5) “g is not Eθ
α-Laver”

is ΣZFC+aθ
3 . Since κ is extendible, we have by Theorem 2.18(2),

(5.6) Vκ |= “g is not Eθ
α-Laver”.

Let (x, λ) ∈ Vκ be a witness for (5.6). But now Lemma 5.14 implies that (x, λ) is also a witness
for (5.5), and we are done.

Finally, assume κ is globally superstrong. Suppose g : α → Vα is not Eθ
α-Laver, with witnesses

x, λ. Let j : V → N be a superstrong embedding with critical point κ and with j(κ) > λ.

Claim. N |= φ(g, x, λ).
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Proof of Claim. Suppose that for some β > λ and some i : Vβ → M ∈ (Eθ
α

)N , i has Laver-
like values with respect to α, λ, x, g. Since θ is adequately absolute in N , by Lemma 5.14 some
ĩ : Vβ̃ → M̃ ∈ (Eθ

α ∩ Vj(κ)

)N =
(Eθ

α

)Vj(κ) also has Laver-like values with respect to α, λ, x, g. By
adequate absolutness in V , (̃i, M̃ ) ∈ Eθ

α, contradicting φ(g, x, λ).

Continuation of Proof of Theorem. To complete the proof for this case, we begin by observing
that, by the Claim,

N |= ∃x, λ ∈ Vj(κ) φ(g, x, λ).

Pulling back with j (and noting that j(α) = α and j(g) = g), we obtain

V |= ∃x, λ ∈ Vκ φ(g, x, λ).

Thus, since g was arbitrary, we have shown that Eθ
α-Laver failures are localized below κ.

5.17 Corollary. Suppose θ ∈ {θext, θsah, θsh}. Suppose κ is globally superstrong or extendible.
Then Eθ

α-Laver failures are localized below κ for all α < κ.

We can obtain the result for θ = θstr and θsc under weaker hypotheses:

5.18 Theorem. Suppose θ ∈ {θstr, θsc} and assume κ is a strong cardinal. Then Eθ
α-Laver failures

are localized below κ for all α < κ.

Proof. Suppose α < κ and g : α → Vα is not Eθ
α-Laver at α. Then by Proposition 2.29 and

the remark following, we can find x ∈ Vκ and λ < κ with λ > max(α, rank(x)) such that for
all F , iF (g)(α) = x, where F is either a normal ultrafilter over Pαλ or an extender with critical
point α and support Vλ. In particular, we use the remark following Proposition 2.29 to pick
λ > max(α, rank(x)) in the supercompact case and to ensure λ is a successor ordinal in the strong
case. Let β = λ+ ω.

Claim. x, λ, β satisfy the strong coherence criterion for Laver failure (as in Proposition 5.9).

Proof of Claim. Since α may have no special large cardinal properties, it is possible that β ∈
Dom Eθ

α. In that case, by coherence, (5.3) must hold—and by the particular definitions of Esc
α and

Estr
α , it must hold when β = λ + 1 as well. On the other hand, if β ∈ Dom Eθ

α, then β = min{γ :
γ > λ ∧ β ∈ Dom Eθ

α}, and no i : Vβ → M ∈ Eθ
α has Laver-like values with respect to κ, λ, x, g. In

other words, x, λ, β satisfy (5.2), as required.

Continuation of Proof of Theorem. By Proposition 5.9, x, λ ∈ Vκ witness that g is not Eθ
α-

Laver at α. Thus we have shown that for all α < κ,

∀g : α → Vα [“g is not Eθ
α-Laver at α” =⇒ ∃x, λ ∈ Vκ φ(g, x, λ)].

We were able to obtain the result in Theorem 5.18 assuming only a strong cardinal because of
some of the special properties of the classes Estr

κ and Esc
κ . One such property is coherence. Another

71



is the property shared by those Eθ
κ that have some sort of ultrafilter definition. This property makes

it possible (as in Proposition 2.29) to form a set of all possible counterexamples, and then pick a
ν-strong embedding j : V → N whose codomain contains a Vν large enough to contain this set. The
fact that the possible counterexamples form a set, rather than a proper class, can be formulated as
an abstract property of classes Eθ

κ—that of being set-based. We have been able to obtain the results
of Theorem 5.16(1) using coherence and the notion of set bases, but only under the assumption
that κ is globally superstrong (and Theorem 5.16(1) shows that under such a strong assumption,
coherence and set bases aren’t needed). Since the notion of set bases is of independent interest, we
give the definition and some basic results in Section 7.

The next block of results address property (2) from Theorem 5.13. Theorem 5.19 shows that
property (2) can be proven to hold in N if Eθ

κ is weakly compatible with j (and is well enough
behaved in other ways), just as in the case in which j is the WA-embedding (Theorem 4.22);
Theorem 5.24 provides conditions under which the result holds for each of the specific classes we
have been studying.

5.19 Theorem. Suppose j : V → N is a superstrong embedding with critical point κ. Suppose θ

is adequately absolute and Eθ
κ is Laver-closed at beth fixed points, and weakly compatible with j.

Then both of the following hold for any function g : κ → Vκ:

(A) N |= ∀λ < j(κ)¬φ(g, j(g)(κ), λ)
(B) Vj(κ) |= ∀λ¬φ(g, j(g)(κ), λ).

Proof. First note that if θ is adequately absolute and j is a superstrong embedding, then (B) ⇒
(A). We prove (B). Assume λ < j(κ) satisfies Vj(κ) |= φ(g, j(g)(κ), λ), and assume λ is a limit. Let
x = j(g)(κ). Since Eθ

κ is weakly compatible with j, there is i : Vβ → M ∈ Eθ
κ that has Laver-like

values with respect to κ, λ, x, g, and λ < β < j(κ). Since Eθ
κ is Laver-closed at beth fixed points and

Eθ
κ has a representative in (λ, j(κ)), the Laver-closure index Ic is defined at λ, j(κ). To ensure that

β is large enough, use weak compatibility again to obtain i1 : Vβ1 → M1 for which i1 has Laver-like
values with respect to κ, λ, x, g, and Ic(λ, j(κ)) ≤ β1 < j(κ). We are not done, howewver, since
(i1,M1) may not be in Vj(κ). Because j is superstrong, j(κ) is a beth fixed point; thus we can use
Proposition 5.4 to obtain i′1 : Vβ1 → M ′

1 for which

(i′1,M
′
1) ∈

(Eθ
κ

)Vj(κ), i′1(κ) > λ, and i′1(g)(κ) = x,

and this is a contradiction.

In the proof of Theorem 5.19, we have spelled out in detail a typical application of weak
compatibility and Laver-closure. Since the same reasoning works every time, we will abbreviate
such arguments in later proofs.

In Theorem 5.24, we state conditions under which property (2) from Theorem 5.13 holds (both
in N and in Vj(κ)) for the specific classes of embeddings we have been studying. As Theorem 5.19
shows, it suffices to show that each of these classes is weakly compatible with a sufficiently strong
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ambient embedding. We give some preliminary results about compatibility and weak compatibility
of these classes.

5.20 Theorem. Suppose j : V → N is elementary with critical point κ.

(1) Estr is compatible with j if j is a superstrong embedding.

(2) Esc is compatible with j if j is an almost huge embedding.

(3) Esah is compatible with j if j is a huge embedding.

Proof of (1). Suppose κ < λ < j(κ). We may assume that λ is a successor ordinal. Use the fact
that j is a superstrong embedding to obtain the extender having critical point κ and support Vλ

that is derived from j. From this extender we can define i : Vβ → M ∈ Estr
κ for which λ < β < j(κ),

and there is k :M → V N
j(β) such that k ◦ i = j |\ Vβ and k |\ Vλ = idVλ

.

Proof of (2). Suppose κ < λ < j(κ). Using the fact that j is an almost huge embedding , we
may obtain the normal ultrafilter over Pκ|Vλ| derived from j and then, as in part (1), define the
required i and k. (Note that a superstrong embedding is not enough here: We may not be able to
define the required normal ultrafilter over Pκ|Vλ|, since j′′|Vλ| may not be in N .)

Proof of (3). We wish to apply Theorem 2.11; to do so, we first show that whenever j : V → N

is a huge embedding with critical point κ and 〈Uη : κ ≤ η < j(κ)〉 is the derived coherent sequence
of normal ultrafilters over Pκη, κ ≤ η < j(κ) (which necessarily satisfies B(κ, j(κ))), the set

{α < j(κ) : 〈Uη : κ ≤ η < α〉 satisfies B(κ, α)}

is unbounded in j(κ). (Note that this claim asserts more than just that the almost huge cardinals
are unbounded below j(κ).)

To prove the claim, we fix such a j : V → N and 〈Uη : κ ≤ η < j(κ)〉 and set h = 〈Uη : κ ≤
η < j(κ)〉. By hugeness of κ, h ∈ N , and by absoluteness,

(5.7) N |= “h is coherent and satisfies B(κ, j(κ))”.

Assume there is α0 < j(κ) such that h |\ α does not satisfy B(κ, α) whenever α0 ≤ α < j(κ).
By absoluteness again,

N |= ∀α (α0 ≤ α < j(κ) =⇒ “h |\ α does not satisfy B(κ, α)”).

Applying jj and noting that jj(α0) = α0,

N1 |= ∀α (α0 ≤ α < j2(κ) =⇒ “jj(h) |\ α does not satisfy B(κ, α)”).

In particular, setting α = j(κ) and noting that jj(h) |\ j(κ) = h,

(5.8) N1 |= “h does not satisfy B(κ, j(κ))”.
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By absoluteness, (5.8) contradicts (5.7), and our claim is proved.
For the proof of (3), suppose κ < λ0 < j(κ). Let 〈Uη : κ ≤ η < j(κ)〉 be the coherent

sequence derived from j. By the claim just proved, there is λ such that λ0 < λ < j(κ) and
〈Uη : κ ≤ η < λ〉 satisfies B(κ, λ). Let i : V → M denote the canonical embedding into the direct
limit of the ultrapowers, obtained from 〈Uη : κ ≤ η < λ〉 in the usual way. By Theorem 2.11,
there is e : M → N such that e |\ Vλ0 = idVλ0

and j = e ◦ i. Now i |\ Vλ+ω ∈ Esah
κ and a suitable

restriction of e satisfy the requirements for compatibility with j |\ Vβ up to Vλ0 . Since λ0 was
arbitrary (below j(κ)), it follows that Esah

κ is compatible with j.

An easy argument shows that Eext
κ is compatible with a 2-huge embedding with critical point κ,

but this is not an optimal bound for obtaining the results of Theorem 5.13 for this class. Whether
this bound can be improved is open:

5.21 Open Question. Is Eext
κ compatible with an almost huge embedding having critical point κ?

As we mentioned at the end of Section 4, we are unable to prove that Esh
κ is compatible even

with the strongest embeddings. We can, however, prove that Eext
κ and Esh

κ are weakly compatible
with almost huge and 2-huge embeddings, respectively, as an application of a fairly general result
about weak compatibility:

5.22 Theorem. Suppose j : V → N is a superstrong embedding having a critical point κ that is

a strong cardinal. Suppose θ is a suitable, adequately absolute formula. Assume also that for each

λ < j(κ), there is a β ∈ (
Dom Eθ

κ

)N
such that β > λ and if i = j |\ Vβ : Vβ → M , whereM = V N

j(β),

then (i,M) ∈ (Eθ
κ

)N
. Then Eθ

κ is weakly compatible with j.

Proof. Let j : V → N be as in the hypothesis. Let λ, g : κ → Vκ, r : κ → P (κ) satisfy

(a) κ < λ < j(κ);
(b) rank(j(g)(κ)) < λ;
(c) if D is the normal ultrafilter derived from j, then for all δ < κ, r(δ) ∈ D.

Let x = j(g)(κ). Let β ∈ (
Dom Eθ

κ

)N be such that β > λ and, if i = j |\ Vβ : Vβ →
M ∈ Eθ

κ, where M = V N
j(β), then (i,M) ∈ (Eθ

κ

)N . Clearly, in N , i has Laver-like values with
respect to κ, λ, x, g and satisfies (c) (with j replaced by i). Since N |= “j(κ) is strong”, we can
apply Lemma 5.14 in N to obtain another embedding ĩ : Vβ̃ → M̃ ∈ (Eθ

κ ∩ Vj(κ)

)N that has the
same properties (in N). By adequate absoluteness and the fact that V N

j(κ) = Vj(κ),

(Eθ
κ ∩ Vj(κ)

)N =
((Eθ

κ

)Vj(κ)

)N

=
(Eθ

κ

)Vj(κ) = Eθ
κ ∩ Vj(κ).

By a simple absoluteness argument, it follows that ĩ witnesses weak compatibility, as required.

5.23 Corollary. Suppose j : V → N is elementary with critical point κ.

(1) Eext
κ is weakly compatible with j if κ is extendible and j is an almost huge embedding.
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(2) Esh
κ is weakly compatible with j if κ is superhuge and j is a 2-huge embedding.

Proof of (1). Theorem 5.22. Let j : V → N be an almost huge embedding with critical point
κ. Given λ < j(κ), let β = λ + 1 and let i = j |\ Vβ+1. By almost-hugeness of i and adequate
absoluteness, N |= i ∈ Eext

κ . The result follows.

Proof of (2). We apply Theorem 5.22 again. Let j : V → N be a 2-huge embedding with critical
point κ. Let β = j(κ) + ω. By 2-hugeness of j and adequate absoluteness, j |\ Vβ ∈ (Esh

κ

)N
, as

required.

Unlike Theorem 5.20, the proof of Corollary 5.23 requires the classes Eθ
κ to be regular — this

could be improved by simply requiring κ to be a strong cardinal, but doing so still introduces a
global requirement that is absent from the hypotheses of Theorem 5.20. In the case of Eext

κ , using
a different argument (see Proposition 7.19), we can drop this requirement; we do not know how to
do this for Esh

κ .
As a corollary, we can now state conditions under which property (2) of Theorem 5.13 holds in

both N and in Vj(κ) for our five regular classes. The usefulness of proving the result for Vj(κ) will
become clear in the next section where we consider a modified construction for Eθ

κ-Laver sequences.

5.24 Theorem. Suppose j : V → N is an elementary embedding with critical point κ and

g : κ → Vκ is a function. Then both of the following hold:

(A) N |= ∀λ < j(κ)¬φ(g, j(g)(κ), λ)
(B) Vj(κ) |= ∀λ¬φ(g, j(g)(κ), λ),
assuming any one of the following conditions:

(1) θ = θstr and j : V → N is a superstrong embedding;

(2) θ = θsc and j : V → N is an almost huge embedding;

(3) θ = θext, j : V → N is an almost huge embedding, and κ is extendible;

(4) θ = θsah and j : V → N is a huge embedding;

(5) θ = θsh, j : V → N is a 2-huge embedding, and κ is superhuge.

Proof. Parts (1), (2), and (4) follow from Theorems 5.19 and 5.20. Parts (3) and (5) follow from
Theorem 5.19 and Corollary 5.23.

Next, we consider the Laver-reflecting property, corresponding to (3) of Theorem 5.13.

5.25 Theorem. Suppose θ is adequately absolute and g : κ → Vκ is a function. Suppose j : V → N

is an elementary embedding with critical point κ. Then, assuming either of the conditions below,

N |= “Eθ
κ is Laver-reflecting in Vj(κ)”:

(A) κ is extendible;

(B) κ is globally superstrong and j is a superstrong embedding.
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Proof. The result under condition (A) follows from the fact that Laver-ness is ΠZFC+aθ
3 and from

Theorem 2.18(2) applied in N . To prove the result assuming (B), let j be superstrong with critical
point κ. Suppose that, in N , g : κ → Vκ is Eθ

κ-Laver; we show this is true inside Vj(κ). Let x, λ be
such that x ∈ Vλ ∈ Vj(κ). Since θ is adequately absolute, the formula

ψ(g, x, λ) ≡ ∃i∃β∃M (θ(i, κ, β,M) ∧ i(κ) > λ ∧ i(g)(κ) = x)

is ΣZFC+aθ
2 , and holds in N . Since j(κ) is strong in N (by Theorem 2.22(5)), we can apply

Theorem 2.18(1) to conclude that
Vj(κ) |= ψ(g, x, λ),

as required.

5.26 Corollary. If θ ∈ {θext, θsah, θsh}, j : V → N is an elementary embedding with critical point

κ, and either

(A) κ is extendible, or

(B) κ is globally superstrong and j is a superstrong embedding,

then, in N , Eθ
κ is Laver-reflecting in Vj(κ).

Proof. This follows immediately from Theorem 5.25.

We note that Corollary 5.26 also applies to θ = θstr and θ = θsc, but the hypotheses are
stronger than necessary (at least when θ = θstr). We give other general conditions for a class Eθ

κ

to be Laver-reflecting that make use of some of the special properties of these two classes:

5.27 Theorem. Suppose θ is a suitable, adequately absolute formula.

(1) Suppose that Eθ
κ is coherent and Laver-closed at inaccessibles. Suppose ρ > κ is inaccessible

and that Dom Eθ
κ ∩ ρ is cofinal in ρ. Then Eθ

κ is Laver-reflecting in Vρ.

(2) Suppose j : V → N is an elementary embedding with critical point κ. Suppose that each of

the following is true in N : Eθ
κ is coherent and Laver-closed at inaccessibles, and Dom Eθ

κ ∩ j(κ)
is cofinal in j(κ). Then, in N , Eθ

κ is Laver-reflecting in Vj(κ).

Proof. Part (2) is proved by applying part (1) in N , using the fact that adequate absoluteness of
θ holds in N . For (1), suppose g : κ → Vκ is Eθ

κ-Laver at κ. By Proposition 4.15(3), Eθ
κ must be

regular. Let x ∈ Vρ and let λ be such that max(κ, rank(x)) < λ < ρ; without loss of generality,
assume λ is a limit. Using Laver-ness, let j : Vγ → M ∈ Eθ

κ be such that λ < Ic(λ, ρ) < γ,
j(κ) > λ, and j(g)(κ) = x. If γ < ρ, we would be done because, by Laver-closure at inaccessibles,
Proposition 5.4 would give us a j′ : Vγ → M ′ with (j′,M ′) ∈ (Eθ

κ

)Vρ , having Laver-like values with
respect to κ, λ, x, g. Thus, assume instead that γ ≥ ρ. Let β ∈ Dom Eθ

κ with λ < Ic(λ, ρ) < β < ρ

(such a β can be found since Dom Eθ
κ ∩ ρ is cofinal in ρ). By coherence, i = j |\ Vβ ∈ Eθ

κ; clearly,
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i(κ) > λ and i(g)(κ) = x. Now we can use Proposition 5.4 again to obtain another embedding
i′ : Vβ → N with (i′, N) ∈ (Eθ

κ

)Vρ . Thus, Vρ |= “g is Eθ
κ-Laver at κ”.

5.28 Corollary. Suppose j : V → N is an elementary embedding with critical point κ, and

suppose θ is adequately absolute. Let D be the normal ultrafilter derived from j. Then, in N, Eθ
κ

is Laver-reflecting in Vj(κ), assuming either of the following conditions:

(A) θ = θstr and for some X ∈ D and all α ∈ X, α is γ-strong for all γ < κ.

(B) θ = θsc and for some X ∈ D and all α ∈ X, α is γ-supercompact for all γ < κ.

Proof. To apply Theorem 5.27, the only verification that is not immediate is the fact that Dom Eθ
κ

is, in N , cofinal in j(κ). However, notice that (A) implies that in N ,

Vj(κ) |= “κ is strong”

and (B) implies that in N ,

Vj(κ) |= “κ is supercompact”,

as required.

We can put Theorems 5.27(1) and 5.16(1) together to obtain a general condition under which
Laver-ness is absolute for ranks Vρ, for ρ inaccessible:

5.29 Proposition. Suppose θ is adequately absolute and Eθ
κ is a coherent class of embeddings that

is Laver-closed at inaccessibles. Suppose ρ > κ is a globally superstrong cardinal and Dom Eθ
κ ∩ ρ

is cofinal in ρ. Then for all g : κ → Vκ, the statement “g is Eθ
κ-Laver at κ” is absolute for Vρ.

Proof. Notice that the conditions in Theorem 5.27(1) are satisfied, so for all g, “g is Eθ
κ-Laver” is

downward absolute for Vρ. The conditions in Theorem 5.16 are also satisfied, so Eθ
κ-Laver failures

are localized below ρ. The latter statement is equivalent to the assertion that for all g, “g is
Eθ
κ-Laver” is upward absolute for Vρ, by Proposition 5.12, and we are done.

We pause here to make some observations about Question #5, raised in Section 4, concerning
absoluteness of Laver sequences relative to inner models N . One strategy for proving absoluteness
of an Eθ

κ-Laver sequence g in N , given a superstrong embedding j : V → N , is to show that in both
N and V , Eθ

κ is Laver reflecting in Vj(κ) and Eθ
κ-Laver failures are localized below j(κ); to do this,

we could use the hypotheses in Proposition 5.29. Then by a simple combination of downward and
upward absoluteness arguments, we could obtain the absoluteness result for N . However, the large
cardinal strength of the hypotheses from Proposition 5.29 is greater than necessary to obtain the
result; indeed, even the single hypothesis that there is a superstrong cardinal above κ is far more
than is needed. Thus, in addressing Question #5, we will content ourselves with a couple of minor
observations.
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5.30 Proposition. Suppose θ is a suitable formula and Eθ
κ is a class of embeddings. Suppose there

is an elementary embedding j : V → N with cp(j) > κ. Then for all g : κ → Vκ, the statement

“g is Eθ
κ-Laver at κ” is absolute for N .

Proof. Use elementarity and the fact that j(κ) = κ and j(g) = g.

Proposition 5.30 gives us the following information:

5.31 Corollary. Suppose κ is extendible (superhuge). Then for each α > κ, there is an inner model

Nα of ZFC such that for all g : κ → Vκ, the statement “g is Eext
κ -Laver at κ” (“g is Esh

κ -Laver at κ”)

is absolute for Nα and Vα ⊂ Nα.

Proof. If κ is extendible or superhuge, there is a proper class of measurables above κ.

The measurable cardinals mentioned in the previous proof arise as the targets of the em-
beddings that define extendibility or superhugeness of κ; one can ask whether the targets of a
super-almost-huge cardinal are also measurable. We observe here that they are not, in general;
indeed, we will show that if κ is almost huge and λ is the least a.h. target for κ, then λ is not
even weakly compact. Our proof will be brief and assumes familiarity with Πm

n -describability (see
[17,Chapter 32] for background material). To obtain the result, we show that λ is Π1

1-describable.
Let B−

κ be the same as Barbanel’s criterion B(κ, λ), without the clause “λ is inaccessible”, and
with all mention of λ suppressed. We let X denote a second-order variable in the language {∈,U},
where U is a unary relation symbol. Consider the following formulas:

σ1(X) ≡
[
“X is a function” ∧ “dom X is an ordinal α” ∧ X ′′α ⊂ ON

]
=⇒ “X is bounded”;

σ2 ≡ ∃κ [
U is a coherent sequence of normal ultrafilters and satisfies B−

κ

]
;

σ3 ≡ ∀α∃β ∃g : β → Vα [“g is a surjection”].

Let τ = ∀X [σ1(X) ∧ σ2 ∧σ3]. Then under the usual second-order interpretation, and letting U be
a coherent sequence 〈Uη : κ ≤ η < λ〉 satisfying B(κ, λ),

〈Vλ,∈, U〉 |= τ.

(∀X σ1(X) and σ3 together imply that λ is inaccessible, and these along with σ2 imply that λ is
an a.h. target via Barbanel’s Criterion B(κ, λ).) However, for all α < λ,

〈Vα,∈, U ∩ Vα〉 |= τ

since λ has been chosen to be the least a.h. target for κ. Thus λ is not weakly compact.
We note that these observations are not really about Laver sequences at all; they are equally

true for any defined notion whose parameters lie below the critical point of one of the elementary
embeddings described above.

5.32 Open Question. Describe conditions on classes Eθ
κ and inner models N under which “g is

Eθ
κ-Laver” is absolute for N .
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A curious application of absoluteness of Esc
κ is the following:

5.33 Proposition. Suppose κ is both strong and almost huge. Moreover, suppose there exists an
almost huge embedding j : V → N such that cp(j) = κ and for all g : κ → Vκ, the statement “g is

Esc
κ -Laver at κ” is absolute for N . Then κ is supercompact.

Proof. Since j is an a.h. embedding, Vj(κ) |= “κ is supercompact;” this property relativizes
up (using Theorem 2.18(1)), so that in N,κ is supercompact and admits a Laver sequence. By
absoluteness relative to N , there is a Laver sequence at κ in V , and so (by Proposition 4.15) κ is
really supercompact.

Returning to the main thread of ideas, we sum up our sufficient conditions for properties
(1) - (3) of Theorem 5.13 to hold:

5.34 Theorem. Suppose that κ is globally superstrong and suppose j : V → N is a superstrong

embedding with critical point κ. Suppose θ is adequately absolute and Eθ
κ is Laver-closed at beth-

fixed points and weakly compatible with j. Then properties (1)-(3) of Theorem 5.13 are satisfied.

Proof. Theorems 5.16(2), 5.19, and 5.25(B) guarantee that the requirements (1), (2), and (3),
respectively, are satisfied.

5.35 Theorem. Suppose j : V → N is elementary with critical point κ. Under any of the following

conditions on θ, κ, and j, properties (1)-(3) of Theorem 5.13 are satisfied:

(A) θ = θstr, κ is strong, and j is superstrong;

(B) θ = θsc, κ is strong, and j is almost huge;

(C) θ = θext, κ is globally superstrong or extendible, and j is almost huge;

(D) θ = θsah, κ is globally superstrong or extendible, and j is huge;

(E) θ = θsh, κ is globally superstrong or extendible, and j is 2-huge.

Proof. For θ ∈ {θstr, θsc}, we use Theorems 5.18 and 5.24, and Corollary 5.25. Certainly the
conditions in Theorems 5.18 and 5.24 are satisfied for these two classes. For θ = θstr, the fact that
j is superstrong also guarantees that the condition in Corollary 5.25(A) holds. And for θ = θsc,
almost hugeness of j guarantees the condition in Corollary 5.25(B).

For θ ∈ {θext, θsah, θsh}, it is easy to verify that the conditions in Theorem 5.24 and
Corollaries 5.17 and 5.26 are satisfied.

We conclude with our results from this section about Eθ
κ-Laver sequences. We will combine

these with our work in Section 4 to show that, under the hypotheses we have used in this section,
if a class Eθ

κ admits an Eθ
κ-Laver sequence at all, it typically admits a special Eθ

κ-Laver sequence.
As the next lemma shows, this phenomenon can be attributed largely to the fact that the ambient
embeddings j : V → N that we have required in the hypotheses typically have the property that
{α < κ : f |\ α is Eθ

α-Laver} ∈ D, where D is the normal ultrafilter over j.
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5.36 Lemma. Suppose the suitable formula θ and the elementary embedding j : V → N , with

critical point κ, satisfy the following:

(1) for each t : κ → Vκ, the function f = ft obtained in the construction CC(t, Eθ
κ) is Eθ

κ-Laver;

(2) {α < κ : f |\ α is Eθ
α-Laver} ∈ D, where D is the normal ultrafilter over κ derived from j;

(3) Eθ
κ is weakly compatible with j;

(4) Eθ
κ is upward λ-closed for arbitrarily large λ below j(κ);

(5) j(κ) is a limit of beth fixed points.

Then t may be chosen so that f is a special Eθ
κ-Laver sequence.

Proof. Let x = j(f)(κ), and use (4) and (5) to pick a beth fixed point λ0 and a cardinal λ1 such
that rank(x) < λ0 ≤ λ1 < j(κ) and Eθ

κ is upward λ1-closed. Let 〈hα : α < κ〉 be an enumeration
of the functions κ → κ that are definable in Vκ. By (2), if the parameter t : κ → Vκ is defined
as in (4.2) (in Theorem 4.4) we can obtain sets 〈Xα : α < κ〉 with the property that, for each α,
Xα ∈ D and ∀ξ ∈ Xα, rank(f(ξ)) > hα(ξ). Let r : κ → P (κ) be defined by r(α) = Xα. By (3), we
can find β, i : Vβ → M such that λ1 < β < i(κ), (i,M) ∈ Eθ

κ, i(f)(κ) = x, and if Di is the normal
ultrafilter derived from i, then r(δ) ∈ Di for each δ < κ. It follows immediately that f is special.

5.37 Theorem. Suppose θ is a suitable, adequately absolute formula, f is the function constructed
in CC(t, Eθ

κ), κ is globally superstrong, and Eθ
κ is Laver-closed at beth-fixed points. Suppose that

for each γ, there is a superstrong embedding j : V → N with critical point κ such that j(κ) > γ

and Eθ
κ is weakly compatible with j. Then f is an Eθ

κ-Laver sequence. Moreover, if for one such j,

Eθ
κ is upward λ-closed for all λ < j(κ), then the parameter t in the construction of f can be defined
so that f is special.

Proof. The main result follows from Theorems 5.13 and 5.34. We prove the “moreover” clause:
Let j : V → N be a superstrong embedding for which Eθ

κ is upward λ-closed for all λ < j(κ). We
apply Lemma 5.36. Parts (1) and (2) of the lemma hold by Theorem 5.13; parts (3) and (4) hold
by hypothesis; and part (5) holds because j is a superstrong embedding.

5.38 Theorem. Suppose θ is a suitable formula, κ is a cardinal, and f is the function constructed
in CC(t, Eθ

κ). Then, assuming any one of the following conditions, f is Eθ
κ-Laver at κ:

(A) θ = θstr and κ is globally superstrong;

(B) θ = θsc and κ is super-almost-huge;

(C) θ = θext and κ is super-almost-huge;

(D) θ = θsah and κ is superhuge;

(E) θ = θsh and κ is super-2-huge.

Moreover, the parameter t in the construction of f can be defined so that f is special if θ ∈
{θsc, θext, θsah, θsh}.
Proof. The main result follows from Theorems 5.13 and 5.35. We use Lemma 5.36 to prove the
“moreover” clause: Parts (1) and (2) hold because of Theorems 5.13 and 5.35; part (3) follows from
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Theorems 5.20 and 5.23; part (4) is easy to verify; and part (5) holds because in each case j(κ) is
inaccessible.

§6. A Modified Construction

In this section, we show how to obtain Eθ
κ-Laver sequences as Section 5, but with less work.

Our efforts in Section 5 were directed toward proving that properties (1)-(3) of Theorem 5.13 hold
for Eθ

κ for various θ, assuming the proper kind of embeddings j : V → N ; with these established, we
could use Theorem 5.13 to show that the canoncially constructed function is Eθ

κ-Laver. However,
examining these properties and the reasons for proving them suggests a way to obtain the desired
results even without most of these properties.

Property (1) (“Laver failures are localized below κ”) is used to ensure that the f we constructed
was well-defined (if f |\ α is not Eθ

α-Laver, we wanted to be sure that some x, λ in Vκ witness this
fact). Property (3) (“Eθ

κ is Laver-reflecting in Vj(κ)”) is used to ensure that if {α < κ : f |\
α is Eθ

α-Laver} is in the ultrafilter derived from j : V → N , then we may conclude not only that
f is Eθ

κ-Laver in N , but in V as well. Both these properties show how to push concerns about
Laver-ness down to the model Vj(κ). On the other hand, Property (2) (“j(f)(κ) is not a witness
to Laver failure of f”) is already essentially an assertion about sets in Vj(κ), as Theorems 5.19
and 5.24 show.

These observations suggest that we could save ourselves the effort of establishing properties
(1) and (3) if we work inside a Vj(κ) in the first place. To carry out the plan, we will use the same
definition of f as before, except that now it will take place inside a structure of type 〈Vκ,∈, R〉,
where R is a well-ordering of Vκ. With this approach, our concern about whether f is well-defined
evaporates. And the reason f still ends up being Laver in V is because verification of Laver-ness
always takes place within some Vj(κ) and never involves all of V . With this lightened load, our
task becomes simply one of verifying Property (2), now inside a structure of type 〈Vj(κ),∈, j(R)〉.
However, this was essentially accomplished in Theorems 5.19 and 5.24. We devote the rest of this
section to filling in the details.

6.1 Canonical Construction CCR(t, Eθ
κ). Suppose Eθ

κ is a regular class and let R be a well-

ordering of Vκ. Let t : κ → Vκ be definable in the structure 〈Vκ,∈, R〉. In 〈Vκ,∈, R〉, define
fR : κ → Vκ by

fR(α) =




tα if fR |\ α is a Eθ
α-Laver sequence at α

x ∈ Vκ if α is a cardinal and fR |\ α is not Eθ
α-Laver at α,

where x is R-least such that ∃λ φ(fR |\ α, x, λ)
∅ if α is not a cardinal.

First note that, unlike the construction CC(t, Eθ
κ), fR is always well-defined. Also, although fR

is definable in the structure 〈Vκ,∈, R〉, the definition of fR is not absolute (since, for any α, fR |\ α

may be Eθ
α-Laver at α in 〈Vκ,∈, R〉 but not in V ).

Joel Hamkins pointed out to the author that, as in the case of our earlier construction
CC(t, Eθ

κ), it is possible to use an indirect argument, more reminiscent of Laver’s original proof,
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to show that, assuming only supercompactness (strongness) of κ, the above construction yields
a Esc

κ -Laver (Estr
κ -Laver) sequence. As before, the advantage to this approach is that in some

cases we can minimize the large cardinal hypotheses required; the price we pay for this is that
{α : 〈Vκ,∈, R〉 |= “fR |\ α is Eθ

α-Laver at α”} is not guaranteed to be of normal measure 1, and so
we lose the luxury of forcing fR to equal some t : κ → Vκ on a large set. We outline the proof
below:

Assume κ is supercompact. For the proof, we will revert to the original definition of Laver
sequences and use the definition of φ given in Construction 4.3. Suppose the claim is false. Let x, λ
be such that φ(fR, x, λ). Let ν be a beth fixed point greater than γ = (2λ

<κ

)
+
. Let j : V → Mν

be any ν-supercompact embedding and let D be the normal ultrafilter over κ derived from j.
Note that each normal ultrafilter over Pκλ lies in Mν . For each such U , let

iU : V → N ∼= V Pκλ/U ;

īU : Vγ → N̄ ∼= V Pκλ
γ /U,

denote the resulting canonical embeddings for the ultrapowers relative to V, Vγ , respectively. By
Proposition 2.28(A),

(6.1) iU |\ Vκ+1 = īU |\ Vκ+1 and (̄iU , N̄) ∈ Vν ∈ V Mν

j(κ).

Suppose first that {α : 〈Vκ,∈, R〉 |= “fR |\ α is Laver at α”} ∈ D. Then there is a normal
ultrafilter U over Pκλ such that in 〈Vj(κ),∈, j(R)〉Mν , iU (fR)(κ) = x. It follows that (in V )
x = īU (fR)(κ) = iU (fR)(κ), and this is impossible.

Thus, {α < κ : 〈Vκ,∈, R〉 |= ∃λφ(fR |\ α, fR(α), λ)} ∈ D, and so 〈Vj(κ),∈, j(R)〉Mν |=
∃λφ(fR, j(fR)(κ), λ). Let M = 〈Vj(κ),∈, j(R)〉Mν and let U be the normal ultrafilter over Pκλ

derived from j. We have, by (6.1) and Lemma 2.26,

j(fR)(κ) = iU (fR)(κ) = īU (fR)(κ) = īMU (f
R)(κ) = iMU (f

R)(κ),

and we have a contradiction.
We now give a sufficient condition for the construction CCR(t, Eθ

κ) to yield an Eθ
κ-Laver se-

quence; this is the analogue to Theorem 5.13:

6.2 Theorem. Suppose θ is adequately absolute and κ is globally superstrong. Let fR be defined

as in CCR(t, Eθ
κ). Assume that for each γ > κ there is a superstrong embedding j : V → N such

that j(κ) > γ and

(6.2) 〈Vj(κ),∈, j(R)〉 |= ∀λ¬φ(fR, j(fR)(κ), λ).

Then fR is a Eθ
κ-Laver sequence at κ.

Remark. Note that by elementarity, j(fR) is a definable subclass of 〈Vj(κ),∈, j(R)〉.
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Proof of Theorem 6.2 We begin by noting that whenever j satisfies (6.2), we have

(6.3) {α < κ : 〈Vκ,∈, R〉 |= ∀λ¬φ(fR |\ α, fR(α), λ)} ∈ D,

where D is the normal ultrafilter derived from j. Thus, the first case in the definition of fR (in
CCR(t, Eθ

κ)) must hold on a set in D:

(6.4) {α < κ : 〈Vκ,∈, R〉 |= “fR |\ α is Eθ
α-Laver at α”} ∈ D.

Applying j to (6.4), and noting that R ∈ Vj(κ) and j(fR) |\ κ = f , we have

(6.5) Vj(κ) |= “fR is Eθ
κ-Laver at κ”.

Thus, suppose there is a counterexample (x, λ) to Eθ
κ-Laverness of f . We pick j : V → N satisfying

the hypotheses of the theorem—in particular, (6.2)—so that j(κ) > λ. Then (6.5) holds, so we
pick i : Vβ → M ∈ (Eθ

κ

)Vj(κ) that has Laver-like values with respect to κ, λ, x, fR. By adequate
absoluteness, (i,M) ∈ Eθ

κ, and we have the required contradiciton.

Notice that since (6.4) holds, we should be able to reason as in Section 5 to show that the
function fR can be defined so that the functions α �→ |fR(α)| and α �→ rank(fR(α)) dominate,
on sets in D, the functions κ → κ that are definable in Vκ; the argument will work as long as we
can obtain a dominating function t : κ → Vκ (as per the definition of fR) that is definable in some
〈Vκ,∈, R〉 . We show here (using the simplified argument suggested by the referee) that, in fact,
every t : κ → Vκ is definable in such a structure.

Let Succ denote the successor ordinals below κ and Lim the limit ordinals below κ. Let
t : κ → Vκ be a function. We define a bijection h : κ → Vκ from which t is definable. Let
q : Lim→ t = {(α, t(α)) : α < κ} and r : Succ→ Vκ \ t both be bijections. Define h by

h(α) =
{
q(α) if α is a limit
r(α) if α is a successor.

Letting Rh denote the well-ordering of Vκ determined by h, we have that x = t(α) if and only if
〈Vκ,∈, Rh〉 |= ∃β [“β is a limit” ∧ h(β) = (α, x)].

The next theorem shows that, for “typical” classes Eθ
κ, weak compatibility with j suffices to

establish (6.2); the result follows immediately from Theorem 5.19(B).

6.3 Theorem. Suppose j : V → N is a superstrong embedding with critical point κ. Suppose θ

is adequately absolute and Eθ
κ is Laver-closed at beth fixed points and weakly compatible with j.

Then for any function g : κ → Vκ,

(6.6) 〈Vj(κ),∈, j(R)〉 |= ∀λ¬φ(g, j(g)(κ), λ).

We now record the results of Theorem 5.24 in the present context.
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6.4 Theorem. Suppose j : V → N is an elementary embedding with critical point κ and g : κ →
Vκ is a function. Then (6.6) holds, assuming any one of the following:

(1) θ = θstr and j : V → N is a superstrong embedding;

(2) θ = θsc and j : V → N is an almost huge embedding;

(3) θ = θext and j : V → N is an almost huge embedding;

(4) θ = θsah and j : V → N is a huge embedding;

(5) θ = θsh and j : V → N is a 2-huge embedding.

We conclude the section with results summarizing the work from this section, and combine
these with our work in previous sections concerning special Eθ

κ-Laver sequences. As was the case
for the construction CC(t, Eθ

κ), our methods typically allow us to choose t and R in CCR(t, Eθ
κ) so

that fR is special. We begin with the analogue of Lemma 5.36:

6.5 Lemma. Suppose the suitable formula θ and the elementary embedding j : V → N , with

critical point κ satisfy the following:

(1) for each well-ordering R of Vκ

(a) for each t : κ → Vκ definable in 〈Vκ,∈, R〉, the function fR = fR,t obtained in the

construction CCR(t, Eθ
κ) is Eθ

κ-Laver;

(b) {α < κ : 〈Vκ,∈, R〉 |= “fR |\ α is Eθ
α-Laver”} ∈ D, where D is the normal ultrafilter over

κ derived from j;

(2) Eθ
κ is weakly compatible with j;

(3) Eθ
κ is upward λ-closed for arbitrarily large λ below j(κ);

(4) j(κ) is a limit of beth fixed points.

Then R and t may be chosen so that fR is a special Eθ
κ-Laver sequence.

Proof. The function t can be chosen just as in (4.2) (in Theorem 4.4), so that it dominates the
functions κ → κ that are definable in Vκ on sets in D. By the discussion following Theorem 6.2,
we can find a well-ordering R of Vκ for which t is definable in 〈Vκ,∈, R〉. The proof that this choice
of R and t make fR special is the same as the corresponding proof for Lemma 5.36.

Combining Theorems 6.2 and 6.3 with the previous lemma, we obtain:

6.6 Theorem. SupposeR is a well-ordering of Vκ and f
R is constructed as inCCR(t, Eθ

κ). Suppose
θ is an adequately absolute formula, κ is globally superstrong, and Eθ

κ is Laver-closed at beth-fixed

points. Suppose that for each γ, there is a superstrong embedding j : V → N with critical point

κ such that j(κ) > γ and Eθ
κ is weakly compatible with j. Then fR is an Eθ

κ-Laver sequence.

Moreover, if for one such j, Eθ
κ is upward λ-closed for all λ < j(κ), then R and t can be chosen in

the construction so that fR is a special Eθ
κ-Laver sequence.

Proof. The main result follows from Theorems 6.2 and 6.3. We prove the “moreover” clause: Let
j : V → N be one of the superstrong embeddings described in the hypothesis for which Eθ

κ is
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upward λ-closed for all λ < j(κ). We apply Lemma 6.5. Part (1a) follows from Theorem 6.2. Part
(1b) follows from the proof of Theorem 6.2 (note the display (6.4)). Parts (2) and (3) hold by
hypothesis. And Part (4) holds because j is superstrong.

Finally, the following results mirror Theorem 5.38.

6.7 Theorem. Suppose θ is adequately absolute, κ is a cardinal, and fR is defined as in

CCR(t, Eθ
κ). Then fR is Eθ

κ-Laver assuming any one of the following conditions:

(A) θ = θstr and κ is globally superstrong;

(B) θ = θsc and κ is super-almost-huge;

(C) θ = θext and κ is super-almost-huge;

(D) θ = θsah and κ is superhuge;

(E) θ = θsh and κ is super-2-huge.

Moreover, in the construction, R and t can be chosen in the construction so that fR is a special

Eθ
κ-Laver sequence, whenever θ ∈ {θsc, θext, θsah, θsh}.

Proof. The main result follows from Theorems 6.2 and 6.4. We use Lemma 6.5 to prove the
“moreover” clause: Part (1a) follows from Theorem 6.4. Part (1b) follows by the reasoning in the
proof of Theorem 6.2 that leads to the relation (6.4). Part (2) follows from Theorems 5.20 and 5.23.
Part (3) is easy to verify, and part (4) follows because, in each case, j(κ) is inaccessible.

Our efforts to obtain results about the Laver-ness of the functions constructed in this and the
previous section have been guided by the strategy used in our WA-proof in Section 4. That proof
guarantees that

(6.7) {α : f |\ α is Eθ
α-Laver} ∈ D,

where D is the normal ultrafilter over κ derived from the WA embedding j. Our arguments, under
weakenings of WA, have, essentially, preserved the truth of (6.7). As we mentioned at the beginning
of Section 5, this approach has the advantage of permitting us to construct a diverse range of Eθ

κ-
Laver sequences, but limits our ability to obtain optimal hypotheses under which the bare existence
of an Eθ

κ-Laver sequence could be proven. These concerns lead to an important open question:

6.8 Open Question. Is Eθ
κ Laver-generating if θ is any8 of the formulas θsah, θext, θsh?

§7. Related Results

In this section, we bring together a number of partial results and questions concerning the
material of previous sections.

8The class Eext
κ is now known to be Laver-generating; see [9], and also the Appendix of this

paper for a correction.
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Equivalent Forms of Barbanel’s Criterion

We prove here that Barbanel’s Criterion B(κ, λ), the criterion SRK(κ, λ), and the criterion
actually used by Barbanel for almost huge cardinals in [3] are equivalent. We shall denote the last
of these B′(κ, λ).

7.1 Proposition. The following are equivalent:

(1) κ is almost huge with target λ.

(2) There is a coherent sequence 〈Uη : κ ≤ η < λ〉 satisfying SRK(κ, λ), namely, λ is inaccessible
and for all η, ρ for which κ ≤ η < λ and η ≤ ρ < jη(κ) there is ζ such that η ≤ ζ < λ and

kηζ(ρ) = ζ.

(3) There is a coherent sequence 〈Uη : κ ≤ η < λ〉 satisfying B(κ, λ), namely, λ is inaccessible and
for all η for which κ ≤ η < λ and all h : Pκη → ON, if {x ∈ Pκη : ot(x) ≤ h(x) < κ} ∈ Uη

then there is ζ such that η ≤ ζ < λ and {x ∈ Pκζ : ot x = h(x ∩ η)} ∈ Uζ .

(4) There is a coherent sequence 〈Uη : κ ≤ η < λ〉 satisfying B′(κ, λ), namely, λ is inaccessible and
for all η for which κ ≤ η < λ, and all h : Pκη → ON, if {x ∈ Pκη : ot(x) ≤ h(x) < κ} ∈ Uη,

then there is ζ such that η ≤ ζ < λ and {x ∈ Pκζ : h(x ∩ η) ≤ |x|} ∈ Uζ .

Proof. (1)⇔ (2) is proven in [27, Theorem 8].
To prove (1) ⇒ (3), suppose κ is almost huge with target λ. Let j : V → M be an a.h.

embedding with target λ. Let 〈Uη : κ ≤ η < λ〉 be the coherent sequence derived from j (see the
proof of [27, Theorem 8]). Given h : Pκη → ON , with κ ≤ η < λ, assume {x ∈ Pκη : ot(x) ≤ h(x) <
κ} ∈ Uη. By definition of Uη, we have η = ot(j′′η) ≤ j(h)j′′η < j(κ); thus, letting ζ = j(h)(j′′η),
we have η ≤ ζ < j(κ). Also, since ζ = j(h)(j′′ζ ∩ j(η)), we have (as in [27])

{x ∈ Pκζ : ot x = h(x ∩ η)} ∈ Uζ ,

as required.
For (3)⇒ (4), under the hypotheses of either (3) or (4), simply note that

{x ∈ Pκζ : ot x = |x|} ∈ Uζ ,

and
{x ∈ Pκζ : h(x ∩ η) = |x|} ∈ Uζ implies {x ∈ Pκζ : h(x ∩ η) ≤ |x|} ∈ Uζ .

Finally, (4)⇒ (1) was proven in the lemma of [3, p. 180].

Variations on Regularity

Let us recall the variations on the concept of a regular class, introduced in Section 4:

Given a suitable formula θ, we call Eθ
κ

regular if ∀γ > κ∃β ≥ γ ∃i ∈ Eθ
κ [i : Vβ → M ∧ i(κ) > γ ∧ Vγ ⊂ M ];

weakly regular if ∀γ > κ∃β > κ∃i ∈ Eθ
κ [i : Vβ → M ∧ i(κ) > γ ∧ Vγ ⊂ M ];

86



semi-regular if ∀γ > κ∃β ≥ γ ∃i ∈ Eθ
κ [i : Vβ → M ∧ ∧Vγ ⊂ M ];

weakly semi-regular if ∀γ > κ∃β > κ∃i ∈ Eθ
κ [i : Vβ → M ∧ ∧Vγ ⊂ M ].

Proposition 4.13 showed that the existence of a suitable θ for which Eθ
κ is regular or weakly

regular is equivalent to the statement that κ is a strong cardinal. As promised, we can obtain an
equiconsistency result for the other two types of classes:

7.2 Proposition. Suppose κ is an infinite cardinal. Then the following are equiconsistent:

(1) κ is a strong cardinal;

(2) for some suitable formula θ, Eθ
κ is semi-regular;

(3) for some suitable formula θ, Eθ
κ is weakly semi-regular.

Proof. (1) ⇒ (2) and (2) ⇒ (3) are immediate. For (3) ⇒ (1), assume Eθ
κ is weakly semi-regular.

Consider the following statement:

(7.1) ∃λ > κ∃i ∈ Eθ
κ [i : Vβ → M ∧ i(κ) ≤ λ ∧ Vλ ⊂ M ].

If (7.1) is false, we can show that κ is a strong cardinal, as follows: Let λ > κ and let i : Vβ →
M ∈ Eθ

κ be such that Vλ ⊂ M . Since (7.1) fails, i(κ) > λ, as required.
On the other hand, if (7.1) is true, let λ, i : Vβ → M satisfy the conditions in (7.1). Let γ

be such that κ < γ < i(κ). We can obtain from i, as in Proposition 2.5, an extender with critical
point κ and support Vγ . Thus, Vi(κ) |= “κ is a strong cardinal,”, and we are done.

Returning to our variations on the definition of regularity, it is clear that regular implies
weakly regular and semi-regular, and each of these implies weakly semi-regular. We show that
weakly semi-regular does not imply weakly regular or semi-regular (assuming something more than
an extendible cardinal); that weakly regular does not imply semi-regular (assuming there is an
extendible cardinal); and that, assuming V = HOD, semi-regular does not imply weakly regular
(under very strong hypotheses). We also formulate fairly natural conditions under which semi-
regular does imply weakly regular.

7.3 Examples.

(1) A weakly semi-regular class that is neither weakly regular nor semi-regular. We make use
of the following hypothesis: There exists an extendible cardinal λ, ordinals κ, β, and an elementary
embedding i with critical point κ such that κ < β < λ and i : Vβ → Vλ. (The hypothesis holds
under WA: let β = j(κ) and λ = j2(κ).)

Given such κ, λ, β, i, recall that, since λ is extendible, there are arbitrarily large ν such that
Vλ ≺ Vν ; for each γ > λ, let νγ > γ be least such that Vλ ≺ Vνγ

. For each γ, let iγ : Vβ → Vνγ

be the composition inclγ ◦ i, where inclγ is the inclusion map Vλ ↪→ Vνγ
. Let E = {iγ : γ > λ}.

Clearly, there is a suitable formula which defines E and E is weakly semi-regular. But E is neither
semi-regular nor weakly regular because {i(κ) : i ∈ E} ∪Dom E ⊂ Vλ.
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(2) A weakly regular class that is not semi-regular. Let E = {i ∈ Eext
κ : dom i = Vκ+1}. E

is clearly defined by some suitable formula; and it is weakly regular since for each λ > κ there is
j ∈ Eext

κ such that j(κ) > λ, and j |\ Vκ+1 ∈ E . E is not semi-regular since the domains of its
elements are uniformly bounded.

(3) A semi-regular class that is not weakly regular. This example is only a consistency result:
We assume V = HOD. We also use the following strong hypothesis: There exist λ,U such that U
is a huge ultrafilter over P (λ) witnessing that κ is huge, and, for arbitrarily large β, the following
holds:

(7.2) ∃ζβ ∃kβ [kβ : V N
iU (β) → Vζβ

∧ “ζβ is extendible” ∧ kβ(iU (κ)) = λ)].

(The hypothesis can be proven from WA as follows: If j is the WA-embedding with critical
point κ, let U be the normal ultrafilter over P (j(κ)) derived from j and let i : V → N be the
canonical embedding. As in Section 2 (see remarks following Proposition 2.13), there is k : N → V

such that k ◦ i = j. By WA, there are arbitrarily large extendibles β greater than j(κ); for each
such β, N |= “i(β) is extendible.”. Let ζβ = j(β) = k(i(β)) and let kβ = k |\ V N

i(β). Finally, let
λ = j(κ). (The main result in [8] shows that WA is consistent with the axiom V = HOD.))

Let F be a definable well-ordering of the universe (without parameters). We let λ be the
least target of a canonical huge embedding having critical point κ for which the properties in
the hypothesis hold. Use F to obtain the least huge ultrafilter U satisfying these properties with
respect to κ and λ. Use F to obtain class functions G and K that select ζβ and kβ for each β:
G(β) = ζβ , K(β) = kβ . For convenience, we will make sure G and K are defined on all of ON

by letting ζβ = 0 and kβ = ∅ whenever β does not satisfy (7.2). Note that these class functions
can be defined with κ as their only parameter. Using the hypothesis, let Mβ = V N

iU (β) for each

β > j(κ). For each β satisfying (7.2), let 〈γ(β)
α : α ∈ ON〉 be the increasing enumeration of the

ordinals γ > ζβ for which Vζβ
≺ Vγ . Let inclβ,α denote the inclusion map Vζβ

↪→ V
γ
(β)
α
. Finally, let

E = {inclβ,α ◦ kβ ◦ iU |\ Vβ : β > j(κ) and ζβ is extendible}.
Because of our careful use of F, G, and K, E can be defined by a suitable formula. Since

we have ensured the existence of domains Vβ for arbitrarily large β each having arbitrarily large
codomains, E is semi-regular; but E is not weakly regular since {e(κ) : e ∈ E} = {λ}.

The next two definitions provide conditions under which semi-regular implies weakly regular
(in fact, regular). The main idea is to mimic the proof that, if we remove the condition “j(κ) > λ”
in the definition of λ-supercompact, there must be some n ∈ ω such that jn(κ) > λ (see [18,
23.15a]). We would like to show that if there is a uniform bound λ on the i(κ) for i ∈ Eθ

κ then
for some i ∈ Eθ

κ we would have in(κ) < λ for all n ∈ ω; we would then be able to obtain an
embedding Vγ+2 → Vγ+2 with critical point κ and with γ = sup({in(κ) : n ∈ ω}), which would
contradict Kunen’s theorem. However, because the codomains of embeddings in Eθ

κ are generally
larger than their corresponding domains, it is not generally possible to iterate embeddings. We could
accomplish something roughly equivalent to one step of iteration if for a given i : Vβ → M ∈ Eθ

κ we
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could find an extension î ∈ Eθ
κ with M ∈ dom î; then î(i(κ)) would essentially be i2(κ). Still, it’s

not necessarily true that (̂i |\ M) ◦ i ∈ Eθ
κ, so there is no guarantee that î(i(κ)) < λ.

We will introduce conditions on a class Eθ
κ that will eliminate these problems. We will say that

a class admits threads if, roughly, every i has extensions with arbitrarily large domain. And a class
will be closed under powers if “compositions,” as described above, always remain in Eθ

κ.

7.4 Definition. (Threads) Suppose Eθ
κ is a semi-regular class of embeddings. An element iβ :

Vβ → M ∈ Eθ
κ admits a thread if there is a class function T: Dom Eθ

κ \ β → Eθ
κ : γ �→ (iγ ,Mγ),

called a thread starting at iβ , with the following properties:
(A) T(β) = (iβ ,M) and dom iβ = Vβ ;
(B) whenever iδ : Vδ → Mδ and iγ : Vγ → Mγ are both in Eθ

κ, where β ≤ δ < γ, we have
iγ |\ Vδ = iδ, and iγ(Vδ) =Mδ.

Moreover, Eθ
κ admits threads if for each i : Vβ → M ∈ Eθ

κ and each λ < |β| there is an iβ : Vβ → N

such that

(1) iβ is compatible with i up to Vλ;
(2) iβ admits a thread; and
(3) either

(a) Vλ ∩M = Vλ ∩N or
(b) N is λ-closed.

If (3a) holds, we will say that Eθ
κ admits threads with rank closure, whereas of (3b) holds we will

say that Eθ
κ admits threads with sequential closure. If instead of (3), the embedding iβ satisfies, in

each case, property (3′) below, we will say that Eθ
κ admits threads in a strong sense.

(3′) Vλ ⊂ N and N is Vλ-closed.

Because of the peculiarities of our definitions of θsc, θstr, etc., none of the particular classes
we have been investigating admits threads. The reason is that each is correlated:

7.5 Proposition. No member of a regular correlated class of embeddings admits a thread.

Proof. Suppose iβ : Vβ → Mβ is a member of a regular correlated class Eθ
κ, and iβ admits a

thread T. Let F be the increasing class function that witnesses the fact that Eθ
κ is correlated. Since

F is strictly increasing and Eθ
κ is regular, we can find γ ∈ Dom Eθ

κ such that F(γ) > iβ(κ). Let
T(γ) = iγ : Vγ → Mγ . By the definition of F, we have F(γ) ≤ iγ(κ). But this contradicts the fact
that iγ(κ) = iβ(κ) < F(γ).

With a slight change in the definition of most of our classes, however, they can be transformed
into classes that admit threads. We use Esc

κ as a typical example. In the definition of θsc, replace
the conjunct “β = λ + ω” with “β ≥ λ + ω”, and call the new formula θ′′sc. The proof given in
Theorem 4.30 can be used to show that supercompactness is normal with respect to θ′′sc. We show
that Esc′′

κ admits threads (with sequential closure) whenever κ is supercompact: Given i : Vβ →
M ∈ Esc

κ and λ < |β|, write β = λ̂+ ω (note λ̂ > λ), and let U be the normal ultrafilter over Pκλ̂.
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Let iβ = iU |\ Vβ . Then we can define a thread T starting at iβ by putting T(γ) = iU |\ Vγ for
each γ ∈ Dom Esc′′

κ . Performing similar modifications to the class definitions, one can show that
if κ is strong, Estr′′

κ admits threads (with rank closure) and if κ is super-almost-huge (superhuge)
then Esah′′

κ (Esh′′
κ ) admits threads in a strong sense. Finally, note that no member of Eext

κ admits
a thread for a more fundamental reason: if i : Vβ → Vη ∈ Eext

κ , it is necessary that β < i(κ), so no
putative thread starting at i could have values at i(κ) or greater.

7.6 Definition. (n-power and Closure Under Powers) Suppose Eθ
κ is semi-regular and i1 : Vβ →

M1 ∈ Eθ
κ. We define n-power(i1) inductively as follows: 1-power(i1) = {i1}. Assume n-power(i1)

has been defined. A function jn+1 is in n + 1-power(i1) if and only if jn+1 is an elementary
embedding with domain Vβ and there are jn : Vβ → N ∈ n-power(i1) and in+1 : Vγ → Mn+1 ∈ Eθ

κ

such that

(1) N ∈ Vγ ;
(2) in+1 |\ Vβ = i1;
(3) jn+1 = (in+1 |\ N) ◦ jn.
We will say that Eθ

κ is closed under powers if for each m ≥ 1 and each i ∈ Eθ
κ, m-power(i) = ∅ and

m-power(i) ⊂ Eθ
κ.

7.7 Theorem. Suppose Eθ
κ is semi-regular and coherent, admits threads with rank closure and is

closed under powers. Then Eθ
κ is regular.

Proof. Assume Eθ
κ satisfies the hypotheses but is not regular. Then there is γ0 > κ such that

∀β ≥ γ0∀i : Vβ → M ∈ Eθ
κ [Vγ0 ⊂ M =⇒ i(κ) < γ0].

By semi-regularity, let i : Vγ → M ∈ Eθ
κ be such that |γ| > γ0 and Vγ0+2 ⊂ M . Since Eθ

κ

admits threads with rank closure, there is iγ1 : Vγ → M1 ∈ Eθ
κ that is compatible with i up to

Vγ0+2, admits a thread T starting at iγ1 and is such that Vγ0+2 ⊂ M1. We define by induction
〈jn : Vγ → Nn | n > 0〉, 〈γn : n > 0〉, and 〈iγn

: Vγn
→ Mn | n > 0〉 so that for each n ≥ 1

(a) γ1 = γ, j1 = iγ1 and N1 =M1;
(b) γn ∈ Dom Eθ

κ and γ ≤ γn < γn+1;
(c) Mn ∈ Vγn+1 ;
(d) iγn

∈ range(T);
(e) jn+1 =

(
iγn+1 |\ Nn

) ◦ jn.
To carry out the induction step of the construction, assume we have defined jn : Vγ → Nn, γn

and iγn
: Vγn

→ Mn. By semi-regularity, let γn+1 be large enough so that Mn ∈ Vγn+1 and
γn+1 > γn. Let iγn+1 : Vγn+1 → Mn+1 be T(γn+1). Let jn+1 =

(
iγn+1 |\ Nn

) ◦ jn.
One proves by induction that for each n > 0, Vγ0+2 ⊂ Nn ⊆ Mn and jn ∈ n-power(iγ1). Since

Eθ
κ is closed under powers, for each n, jn ∈ Eθ

κ. Thus, since Vγ0 ⊂ Nn, jn(κ) < γ0 for each n.
Pick γω ∈ Dom Eθ

κ so that γω ≥ sup({γn : n > 0}) + ω. Let iγω
: Vγω

→ Mω = T(γω). One
shows by induction that for each n, inγω

(κ) = jn(κ) (where inγω
denotes the nth iterate of iγω

).
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Now, let λ = sup({inγω
(κ) : n > 0}). Then λ+ 2 ≤ γ0 + 2 < γω; since Vγ0+2 ⊂ Mω, it follows

that iγω
|\ Vλ+2 is an embedding Vλ+2 → Vλ+2 with critical point κ, violating Kunen’s Theorem

(Theorems 2.14 and 2.15).

Set Bases

We remarked in Section 5 that classes Eθ
κ obtainable in the usual way from normal ultrafilters

are “set-based”; in this subsection, we make this remark precise, indicate why it is true, and show
that the class Eext

κ may fail to have this property.

7.8 Definition. (Bases) Given a class Eθ
κ and ordinals λ, β with κ < λ < β, a (λ, β)-base for Eθ

κ

is a set B ⊂ Eθ
κ such that for each j : Vβ → N ∈ Eθ

κ for which j(κ) > λ, there is i : Vβ → M ∈ B

such that i(κ) > λ and i is compatible with j up to Vλ. Moreover, we will call Eθ
κ set-based if for

each λ > κ, if there is an element of Dom Eθ
κ that is > λ, then there is such a β for which Eθ

κ has a
(λ, β)-base.

Suppose β > κ and λmin = min{j(κ) : j ∈ Eθ
κ}. Then if κ < λ1 < λ2 < min{λmin, β}, every

(λ2, β)-base for Eθ
κ is also a (λ1, β)-base for Eθ

κ.
Also, notice that since a (λ, β)-base B is a subset of Eθ

κ, B actually consists of ordered pairs
(i,M), whereM is the codomain of i; we will observe the same conventions for bases in this regard
as we have for regular classes in general (see comments after Definition 4.12).

The next proposition shows that bases are not generally trivial:

7.9 Proposition. Suppose Eθ
κ is regular and coherent. Then for each β ∈ Dom Eθ

κ and each λ

with κ < λ < β, {(i,M) ∈ Eθ
κ : i(κ) > λ ∧ dom i = Vβ} is a proper class.

Proof. Let λ, β be as in the hypotheses and let Y be a set. By regularity, let γ ≥ β and i : Vγ → M

be such that (i,M) ∈ Eθ
κ and i(κ) > max(λ, rank(Y )). Then by coherence,if i |\ Vβ : Vβ → N , then

(i |\ Vβ , N) ∈ Eθ
κ \ Y .

The classes Eθ
κ, with θ ∈ {θstr, θsc, θsah, θsh}, are set-based. We outline the straightfor-

ward proofs for Esc
κ and Estr

κ . Given λ > κ, let β = |Vλ| + ω, and let Bβ = {iU |\ Vβ :
U is a normal ultrafilter over Pκ|Vλ|}. Now, for every j : Vβ → N ∈ Esc

κ , there is i ∈ Bβ that
is compatible with j up to Vλ. Similarly, Estr

κ is set-based: Given λ > κ, let β = λ + ω + ω

and let Bβ = {iE |\ Vβ : E is an extender having critical point κ and support Vλ+ω}. In a similar
fashion, one can show that Esah

κ and Esh
κ are set-based. On the other hand, as we now show, it

is consistent for κ to be extendible and Eext
κ not to be set-based. We begin with a definition and

some preliminary results; the main result is Theorem 7.13.

7.10 Definition. Suppose E is a class of embeddings all having critical point λ. Then λ is locally
gap extendible in E if there is µ ≥ λ such that {j(µ) | j : Vµ+1 → Vj(µ)+1 ∈ E} is unbounded (in
ON).
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If κ is extendible and E = {j ∈ Eext
κ : dom j = Vκ+1}, then κ is locally gap extendible in E .

However, the kind of locally gap extendible cardinal that interests us here will not generally be
extendible. Assuming it is consistent for Eext

κ to be set-based, we will show that there must be a
locally gap extendible cardinal λ above κ; the strong reflection guaranteed by the global definition
of such a cardinal will provide a ZFC model of “κ is extendible”, leading to a contradiction.

7.11 Theorem. Suppose E is a class of embeddings all having critical point λ, and λ is locally

gap extendible in E . Then there is an inaccessible µ ≥ λ such that for all Π3 formulas φ(x) and all
x ∈ Vλ,

φ[x]⇐⇒ Vµ |= φ[x].

Remark. Notice that in the case µ = λ, an argument like the one required for Theorem 2.18(2)
could be used to prove the theorem.

Proof. Starting with E and λ as in the hypotheses, let µ be least such that {j(µ) : j ∈ E} is
unbounded. Define K : µ+ 1→ V by K(γ) = {j(γ) : j ∈ E}; for γ < µ, K(γ) is bounded.

Claim. The ordinal µ is inaccessible.

Proof of Claim. For each γ < µ, since K(γ) is bounded, both K(γ+1) and K(2γ) are bounded.

Continuation of Proof of Theorem. Because ∪{K(γ) : γ < µ} is bounded, there are E0 ⊆ E
and g : Vµ → V such that

(1) {j(µ) : j ∈ E0} is unbounded;
(2) for each j ∈ E0, j |\ Vµ = g.

Let φ(x) be Π3 and write φ(x) as ∀z ∃y ψ(x, y, z), where ψ is Π1. For one direction, let
x0 ∈ Vλ and assume V |= φ[x0]. Let z0 be an arbitrary element of Vµ; it suffices to show that
Vµ |= ∃y ψ[x0, y, z0]. There must be a y0 such that

V |= ψ[x0, y0, g(z0)].

Choose j ∈ E0 such that y0, g(z0) ∈ Vj(µ) (by (1)). Using (2), the fact that µ is inaccessible, and
the fact that ψ is Π1, we obtain

Vj(µ) |= ∃y ψ[x0, y, j(z0)].

Since j(x0) = x0, we have:
Vµ |= ∃y ψ[x0, y, z0],

as required.
For the other direction, suppose Vµ |= φ[x0]. Given an arbitrary z0, it suffices to exhibit y0

such that V |= ψ(x0, y0, z0). For such a z0, let j ∈ E0 be such that z0 ∈ Vj(µ). By elementarity and
the fact that j(x0) = x0, we have

Vj(µ) |= ∃y ψ[x0, y, z0].

Thus Vj(µ) |= ψ[x0, y0, z0] for some y0. Since ψ is Π1, it holds in V as well (at x0, y0, z0), and we
are done.
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7.12 Lemma. Suppose κ is extendible and Eext
κ has a (δ, ζ)-base, for some δ, ζ. Then there is an

inaccessible µ0 > κ such that Vµ0 |= “κ is extendible”.

Proof. Let B denote a (δ, ζ)-base for Eext
κ . For this proof, we shall say that a subclass F of Eext

κ

is unbounded if the set {j(κ) : j ∈ F} is unbounded in ON . Let E = {j ∈ Eext
κ : dom j = Vζ}.

Note that E is unbounded, since for any ν > ζ, we can find ĵ ∈ Eext
κ having domain Vν (whence

ĵ(κ) > ν), with ĵ |\ Vζ ∈ E . For each b ∈ B, let Eb = {j ∈ E : b is compatible with j up to Vδ}.
Since E is unbounded and B is a set, there is an i : Vζ → Vχ ∈ B such that Ei is unbounded.
Without loss of generality (using unboundedness of Ei), we assume that for all j ∈ Ei, j(κ) > i(κ).
By compatibility, for each j : Vζ → Vξj

∈ Ei there is kj : Vχ → Vξj
such that kj |\ Vδ = idVδ

and
kj ◦ i = j.

Vζ
j ✲ Vξj

i

❄✑
✑

✑
✑

✑
✑✸

kj

Vχ

Using Ei we will obtain λ, µ and a class K1 such that λ is locally gap extendible in K1 with witness
µ: Let µ = i(κ). For each j ∈ Ei, kj(µ) > µ, and in fact {kj(µ) : j ∈ Ei} is unbounded in ON .
Thus, each kj has a critical point in the interval (κ, µ], whence there are λ ∈ (κ, µ] and a subclass
K0 ⊆ {kj : j ∈ Ei} such that {k(µ) : k ∈ K0} is unbounded, and for each k ∈ K0, cp(k) = λ. Let
K1 = {k |\ Vµ+1 : k ∈ K0}. Then λ is locally gap extendible in K1 with witness µ, and Theorem 7.11
applies. In particular, since “κ is extendible” is Π3, this formula reflects to some Vµ0 , where µ0 is
inaccessible and λ ≤ µ0 ≤ µ, as required.

7.13 Theorem. Con(ZFC+“κ is extendible”) =⇒ Con(ZFC+“κ is extendible”+“Eext
κ is not set-

based”).

Proof. Given κ, assume, by way of contradiction, that ZFC � “κ is extendible” =⇒ “Eext
κ is set-

based”, and that κ is extendible. By the previous lemma, pick an inaccessible µ0 > κ such that
Vµ0 |= “κ is extendible”. Then, since Vµ0 |= ZFC, it follows that Vµ0 |= “Eext

κ is set-based”. Thus,
we can again obtain, in Vµ0 an inaccessible µ1 > κ such that Vµ1 |= “κ is extendible”. Continuing
this line of reasoning leads to an infinite descending chain µ0 > µ1 > µ2 > . . . of cardinals, which
is impossible. This proves the theorem.

Our work involving locally gap extendible cardinals in the present context raises some natural
questions. If λ is locally gap extendible (in some class E), let us call the least µ such that {j(µ) :
j ∈ E} is unbounded the gap threshhold for λ. Two natural questions are:

7.14 Open Question. Locally gap extendible cardinals.
(1) Under any large cardinal hypothesis, are there λ, E such that λ is locally gap extendible in E

and such that the gap threshhold for λ is > λ?
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(2) If the answer to (1) is “yes”: Let µ, λ, E be such that λ is locally gap extendible in E , µ is the
gap threshhold for λ, and µ > λ. What is the large cardinal strength of µ?

For (2), we have seen in the proofs above that µ must be inaccessible. In fact, µ has to be
at least λ-inaccessible as we now show: As in [18, p. 16-21], a cardinal κ is 1-inaccessible if κ is
inaccessible; κ is α+1-inaccessible if κ is the κth α-inaccessible; and κ is ζ-inaccessible, where ζ is
a limit, if κ is α-inaccessible for each α < ζ.

Let E0 ⊂ E and g : Vµ → V be as in (1) and (2) of the proof of Theorem 7.11. For the proof
of λ-inaccessiblity we proceed by induction; the limit case is trivial. Let α < λ and assume that µ
is α-inaccessible. For a contradiction, assume that ∃σ < µ ∀ξ < µ ( “ξ is α-extendible” =⇒ ξ < σ).
Then clearly, there is σ < µ such that

(7.3) Vµ |= ∀ξ ( “ξ is α-extendible” =⇒ ξ < σ).

Let ρ = sup(g′′Vµ). Let i, j ∈ E be such that ρ < i(µ) < j(µ), and set ν = i(µ). Then by (7.3) and
the fact that j(α) = α,

Vj(µ) |= ∀ξ (“ξ is α-inaccessible” =⇒ ξ < j(σ) ≤ ρ).

But this is impossible since

Vj(µ) |= “ν is α-inaccessible” ∧ ν > ρ.

As a final remark in this vein, notice that (with the notation and hypotheses as in the last
paragraph) if µ happens to be a closure point for some j ∈ E0 (that is, j′′µ ⊂ µ) then µ must be
Mahlo—indeed, λ-Mahlo—since, for any closed unbounded C ⊆ µ, µ must be a limit point of (and
hence a member of) j(C).

Extensibility and Special E-Laver Sequences
In Theorem 4.9 we showed that the existence of a special (or special∗) Laver sequence at κ

implies that it is consistent for κ to be the κth extendible cardinal. We show in this subsection
that this strong consequence of specialness carries over into the general setting of special Eθ

κ-Laver
sequences (recall Definition 4.25) for classes Eθ

κ that admit sufficient extensibility:

7.15 Definition. Suppose λ is an ordinal and i : Vβ → M is elementary with critical point κ.
Then i is extensible with λ-closure if for each δ ≥ β there are γ > δ and î : Vγ → N such that

(1) î |\ Vβ = i

(2) î(Vβ) =M

(3) N is λ-closed.

In this case, î is called a λ-closed extension of i. Moreover, a class Eθ
κ admits closed extensions if,

whenever λ < |β| and i : Vβ → M ∈ Eθ
κ, there is iβ : Vβ → Mβ ∈ Eθ

κ such that

(A) iβ is compatible with i up to λ+ 1
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(B) Mβ is λ-closed
(C) iβ is extensible with λ-closure.

Clearly, we could have obtained a perfectly good definition of extensibility without including
special closure requirements as we have in Definition 7.15; a more general definition would certainly
have wider applicability. We use the more restricted definition because our only applications of
extensibility always entail these closure requirements.

Notice that extensions are not required to be in Eθ
κ; without this laxity, none of the classes Eθ

κ

studied in this paper would admit closed extensions. Also notice that the “moreover” clause of the
definition requires λ < |β|, but the first part of the definition does not. It is convenient to allow
the possibility β < λ for classes like Eext

κ (see the proof of Proposition 7.16).
We can show that if θ ∈ {θsc, θsah, θsh}, then Eθ

κ admits closed extensions; we prove this for
Esc
κ and leave the proofs of the other cases to the reader. Given λ < |β| and i : Vβ → M ∈ Esc

κ , let
U be the normal ultrafilter over Pκλ derived from i and let iβ = iU |\ Vβ . Now iβ has the required
properties.

On the other hand, we are unable to prove that Eext
κ admits closed extensions. We have the

following partial result:

7.16 Proposition. Suppose κ is super-3-huge and j : V → N is a 3-huge embedding with critical

point κ. Then the set {λ < j(κ) : for some i : Vβ → Vξ ∈ Eext
κ , i is extensible with λ-closure} has

normal measure 1.

Proof. Let S = {λ < j(κ) : λ is a 2-huge target}. Reasoning as in Theorem 2.22(1), one verifies
that S has normal measure 1. Let λ ∈ S and let jλ : V → Mλ be a 2-huge embedding with critical
point κ and target λ. Pick β with κ < β < λ. Note that by 2-hugeness, the codomain of jλ |\ Vβ is
some Vξ; it follows that jλ |\ Vβ ∈ Eext

κ . Clearly, jλ |\ Vβ is extensible with λ-closure.

Next we show that the existence of a special Eθ
κ-Laver sequence, is, as in the supercompact case,

strong enough for κ to be (consistently) the κth extendible cardinal, as long as Eθ
κ has sufficient

extensibility to allow the arguments of Theorem 4.9 to go through.

7.17 Theorem. Suppose θ is a suitable formula.

(1) If Eθ
κ admits closed extensions and there is a special Eθ

κ-Laver sequence at κ, it is consistent

for κ to be the κth extendible.

(2) If there is a special Eθ
κ-Laver sequence at κ with witnesses i, β, λ such that i is extensible with

λ-closure, then it is consistent for κ to be the κth extendible.

Proof. The proofs of (1) and (2) are nearly the same, but (2) is easier; we prove (1). We argue as
in Theorem 4.9. The idea is to replace the embedding iU in (the special∗ version of) Theorem 4.9
with some iβ : Vβ → Mβ ∈ Eθ

κ that witnesses specialness. The argument goes through as long as
there is iγ : Vγ → Mγ satisfying the following:
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(a) iγ |\ Vβ = iβ ;
(b) 〈M′

ξ : ξ < iγ(κ)〉 ∈ Vγ ;
(c) iγ |\ M′

κ ∈ Mγ ,

where
〈M′

ξ : ξ < iγ(κ)〉 = iγ(〈Mξ : ξ < κ〉).

(See the proof of Theorem 4.9 for the definition of 〈Mξ : ξ < κ〉.)
Let g be a special Eθ

κ-Laver with witnesses λ, β, i : Vβ → M ∈ Eθ
κ, and D. Since Eθ

κ admits
closed extensions, we obtain iβ : Vβ → Mβ ∈ Eθ

κ satisfying (A) - (C) of Definition 7.15. It is
straightforward to verify that D is the normal ultrafilter over κ derived from iβ and that λ, β, iβ ,D
witness the specialness of g. Pick γ > β so that iβ(〈Mξ : ξ < κ〉) ∈ Vγ and there is a λ-closed
extension iγ : Vγ → Mγ of iβ . Now iγ clearly satisfies (a), and (b) holds since

iγ(〈Mξ : ξ < κ〉) = iβ(〈Mξ : ξ < κ〉).

To prove (c), we argue as in Theorem 4.9: define h : κ → κ by h(ξ) = rank(Mξ). Observe

iγ(h)(κ) < rank(iγ(g)(κ)) < λ.

Since rank(M′
κ) = iγ(h)(κ) and λ is a beth fixed point, |M′

κ| < λ. Hence, as Mγ is λ-closed,
iγ |\ M′

κ ∈ Mγ , and we are done.

Although Theorem 7.17 is a more general result than Theorem 4.9, it provides us with no new
information concerning the five classes we have been considering in this paper. By Theorem 7.17
and our observations following Definition 7.15, the existence of a special Eθ

κ-Laver sequence implies
the consistency of a proper class of extendibles whenever θ ∈ {θsc, θsah, θsh}; but Theorem 4.9
gave us this result for the case θ = θsc; for θ = θsah or θsh, the result follows from the existence
of an ordinary Eθ

κ-Laver sequence. Using Theorem 7.17, we can’t draw any conclusions about the
strength of special Estr

κ -Laver sequences, or special Eext
κ -Laver sequences. We are left with the

following questions:

7.18 Open Question.

(1) Is the existence of a special Estr
κ -Laver sequence (special Eext

κ -Laver sequence) stronger than
the existence of a strong (extendible) cardinal?

(2) Under any hypothesis, does Eext
κ admit closed extensions?

Weak Compatibility of Eext
κ

In this subsection, we improve Theorem 5.23(1) slightly by eliminating “κ is extendible” from
the hypothesis:

7.19 Proposition. Suppose j : V → N is an almost huge embedding with critical point κ. Then

Eext
κ is weakly compatible with j.
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Proof. Suppose j : V → N is almost huge with critical point κ. Given λ, g : κ → Vκ, r : κ → P (κ)
such that κ < λ < j(κ), rank(j(g)(κ)) < λ and for all δ < κ, r(δ) ∈ D, let x = j(g)(κ), let U j be
defined as in Definition 2.16, and let N1 = (j · j)(N). Observe that

V N1
j2(κ) |= ∀β ∃η (

κ < β < j(κ) =⇒
∃i : Vβ → Vη ∃Di [cp(i) = κ ∧ i(κ) > β ∧ i(g)(κ) = x∧
“Di is the normal ultrafilter derived from i” ∧ ∀δ < κ(r(δ) ∈ Di)]

)
.

(For each β, let η = j(β), i = j |\ Vβ , and let Di be the normal ultrafilter over κ derived from j.)
Thus, S ∈ U j , where

S = {β < j(κ) :Vj(κ) |= ∀α∃η (
κ < α < β =⇒

∃i : Vα → Vη ∃Di[cp(i) = κ ∧ i(κ) > α ∧ i(g)(κ) = x∧
“Di is the normal ultrafilter over κ derived from i” ∧ ∀δ < κ(r(δ) ∈ Di)]

)}.
S may not be stationary (in V ), but by absoluteness, it contains arbitrarily large limits below j(κ).
We can therefore pick a limit β such that λ < β < j(κ) and β ∈ S, and pick α so that λ < α < β.

The corresponding embedding i : Vα → Vη is in Eext
κ and properties (1)-(3) of weak compatibility

are satisfied.

§8. Appendix

The purpose of this section is to correct several errors that were published in [9]. These errors
became apparent during the period that the present paper was being reviewed and modified. The
first error is an erroneous statement about the existence of Esah

κ -Laver sequences that was based
on an earlier (incorrect) version of the present paper. The other two errors are incorrect proofs of
correctly stated theorems about the existence of Eext

κ -Laver sequences. We present an outline of
the results that are in error and follow these with corrections.

Error #1: [9, Theorem 5.1(5)]. This theorem refers to a result that had been stated in an earlier
version of this paper which we formulated in [9] as an axiom SAH4(κ). We formulate an alternative
version of this axiom and show that it has all the features that the version in [9] was supposed to
have.

Error #2: [9, Theorem 4.1]. The theorem states that, assuming only that κ is extendible, the
construction CCR(t, Eext

κ ) produces an Eext
κ -Laver sequence. The result is true and, though the

ideas for a correct proof do appear in [9], the proof given there is not correct; we give a correct
proof here.

Error #3: [9, Theorems 4.4 and 4.5]. These theorems are used in [9] to demonstrate that the
construction CC(t, Eext

κ ) also produces an Eext
κ -Laver sequence assuming only that κ is extendible.

This result is also basically true, as we show below, but the statements of the theorems mentioned
are incorrect.

Correction to Error #1
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Our original approach to the proof that the functions obtained from either CC(t, Esah
κ ) or

CCR(t, Esah
κ ) are Esah

κ -Laver, and our original proof of Theorem 5.20(3) in particular, were some-
what different from our current version. In [9], an axiom that we called SAH4(κ) was extracted
from the original paper, and we argued in [9, Theorem 5.3] that SAH4(κ) is sufficient to prove that
fR obtained in CCR(t, Esah

κ ) is Esah
κ -Laver; in [9, Theorem 5.1(5)] that “κ is superhuge” strongly

implies SAH4(κ); and in [9, Theorem 5.1(4)] that SAH4(κ) is strictly consistency-wise stronger
than another axiom SAH2(κ) that is also concerned with super-almost-huge cardinals. The error
occurs in [9, Theorem 5.1(5)]: our proof, which first appeared in the original version of this paper,
is incorrect; we don’t know at this time the consistency strength of SAH4(κ), or whether it is
consistent with any known large cardinal axiom. The other results are correct but not particularly
meaningful in the absence of a reasonable upper bound on SAH4(κ).

Our plan here is to replace SAH4(κ) with a different axiom, and show that the results originally
obtained for SAH4(κ) go through for our new axiom. Since we have not given the details of SAH4(κ)
as it appears in [9], there should be no confusion if we use the same name for our new version of
this axiom. We begin by giving the statements of the axioms SAH0(κ)-SAH3(κ) from [9], and then
stating our new SAH4(κ). We then provide some other background material and conclude with the
relevant proofs.

If κ is super-almost-huge, let Λ = {λ : λ is an a.h. target for κ}, and, for any class C, C′ =
{ν : ν is a limit point of C}.

SAH0(κ): κ is super-almost-huge.

SAH1(κ): κ is super-almost-huge and the class Λ ∩ Λ′ is bounded.

SAH2(κ): κ is super-almost-huge, and the class Λ ∩ Λ′ is unbounded, and there is µ
such that for all regular ρ > µ the set {γ < ρ : γ is an a.h. target of κ} is
nonstationary in ρ.

SAH3(κ): κ is super-almost-huge and for arbitrarily large regular ρ, the set {γ < ρ :
γ is an a.h. target of κ} is stationary in ρ.

Our new version of SAH4(κ) is the following:

SAH4(κ): κ is super almost huge and there are unboundedly many λ such that λ is an
a.h. target, and for some coherent sequence 〈Uη : κ ≤ η < λ〉 that satisfies
B(κ, λ), the set {α < λ : 〈Uη : κ ≤ η < α〉 satisfies B(κ, α)} is unbounded
in λ.

To compare relative strengths of these hypotheses, we introduced in [9] the following notation:
Given properties A(κ), B(κ) that depend on an infinite cardinal κ, we write:
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A(κ) ZFC−→ B(κ) iff “A(κ) implies B(κ)”

iff ZFC � A −→ B;

A(κ) con−→ B(κ) iff “A(κ) is consistency-wise at least as strong as B(κ)”

iff Con(ZFC +A(κ)) ZFC−→ Con(ZFC +B(κ));

A(κ) s−→ B(κ) iff “A(κ) is strictly consistency-wise stronger than B(κ)”

iff A(κ) con−→ B(κ) and A(κ) ZFC−→ Con(ZFC+B(κ));

A(κ) si−→ B(κ) iff “A(κ) strongly implies B(κ)”

iff A(κ) ZFC−→ B(κ) and {α < κ : B(α)} has normal measure 1.

The terminology strongly implies was introduced in [27].

8.1 Theorem. SAH4(κ)
con−→ SAH2(κ).

Proof. It is clear that SAH4(κ) implies that Λ ∩ Λ′ is unbounded. If there is a regular cardinal
in which Λ is stationary, let ρ be the least such. Then Λ ∩ Λ′ ∩ Λ′′ is also stationary in ρ. Then if
λ = minΛ ∩ Λ′ ∩ Λ′′, it follows that Vλ |= SAH2(κ).

8.2 Theorem. “κ is superhuge” s.i.−→ SAH4(κ).

Proof. Let j : V → N be a huge embedding with critical point κ. It suffices to show that

N |= SAH4(κ).

The proof of Theorem 5.20(3) shows that Vj(κ) |= SAH4(κ). It is easy to see that the statement
SAH4(κ) is globalized local and hence ΠZFC

3 . Thus, if N |= ¬SAH4(κ), this fact would reflect down
to Vj(κ) (since, in N , j(κ) is superhuge, whence Vj(κ) ≺3 V ), giving a contradiction.

SAH3(κ)

�
��✒s.i. ❅

❅❅❘
s

“κ is superhuge” SAH2(κ) s✲ SAH1(κ) ✲✛con SAH0(κ)

❅
❅❅❘s.i. �

��✒
con

SAH4(κ)
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8.3 Theorem. SAH4(κ) implies that for any well-ordering R of Vκ, the function fR obtained in

the construction CCR(t, Esah
κ ) is Esah

κ -Laver.

Proof. This follows from Theorem 5.20(3) and Theorem 6.2.

Correction to Error #2.

The second error in [9] that we address is the proof of [9, Theorem 4.1], which asserts that,
assuming only that κ is extendible, there is a Eext

κ -Laver sequence. The theorem is true; we provide
a correct proof below. We begin with a definition:

8.4 Definition. A well-ordering R of Vδ is rank-preserving if, for all x, y ∈ Vδ, if rank(x) < rank(y)
then (x, y) ∈ R.

8.5 Theorem. If κ is extendible, there is an Eext
κ -Laver sequence at κ. In particular, assuming κ is

extendible, for every rank-preserving well-ordering R and every t : κ → Vκ definable in 〈Vκ,∈, R〉,
the function fR constructed in CCR(t, Eext

κ ) is Eext
κ -Laver.

Proof. Suppose x0, λ0 witness that fR is not Eext
κ -Laver at κ. Let α be such that Vκ ≺ Vα and

x, λ ∈ Vα. Let j : Vα → Vη ∈ Eext
κ . Let D denote the normal ultrafilter derived from j. As usual,

the definition of fR implies that exactly one of the following sets is in D:

S1 = {α < κ : 〈Vκ,∈, R〉 |= “fR |\ α is Eext
α -Laver at α”};

S2 = {α < κ : 〈Vκ,∈, R〉 |= ∃λφ(fR |\ α, fR(α), λ)}.

If S1 ∈ D, then, 〈Vj(κ),∈, j(R)〉 |= “fR is Eext
κ -Laver”. By adequate absoluteness of θext, we can

find i : Vξ → Vγ ∈ Eext
κ ∩ Vj(κ) for which i(fR)(κ) = x0 and i(κ) > λ0, which contradicts our

assumptions about x0, λ0.

Thus, S2 ∈ D, whence

(8.1) 〈Vj(κ),∈, j(R)〉 |= ∃λφ(fR, j(fR)(κ), λ).

Let x1 = j(fR)(κ) and λ1 < j(κ) be witnesses to this formula. By the formulation of the second
case in the definition of fR, x1 must be the R-least set for which fR fails to be Eext

κ -Laver. Since
R is rank-preserving, this means that, since x0 is another set witnessing Laver-failure of fR,

rank(x1) ≤ rank(x0) < α.

Since Vκ ≺ Vα, α must be a limit; thus, let β be such that rank(x1) < β < α. Then if i = j |\ Vβ :
Vβ → Vj(β), (i, Vj(β)) ∈ Eext

κ , i(κ) > λ1 and i(fR)(κ) = x1. Since β < α, it follows that j(β) < η

and (i, Vj(β)) ∈ Vη. Thus

Vη |= ∃e∃β ∃ζ [
(e, Vζ) ∈ Eext

κ ∧ dom e = Vβ ∧ cp(e) = κ∧
β < α ∧ e(κ) > λ1 ∧ e(fR)(κ) = x1

]
.
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Because Vκ ≺ Vα, it follows that Vj(κ) ≺ Vη. Since κ, fR, α, λ1, x1 ∈ Vj(κ), we have:

Vj(κ) |= ∃e∃β ∃ζ [
(e, Vζ) ∈ Eext

κ ∧ dom e = Vβ ∧ cp(e) = κ∧
β < α ∧ e(κ) > λ1 ∧ e(fR)(κ) = x1

]
.

But now any witness (e, Vζ) ∈
(Eext

κ

)Vj(κ) = Eext
κ ∩ Vj(κ) contradicts (8.1), and we have a contra-

diction.

Correction to Error #3. The goal of [9, Theorems 4.4, 4.5] was to show that the function
defined in CC(t, Eext

κ ) is Eext
κ -Laver, assuming only that κ is extendible. This result is basically

true, but the two theorems cited are incorrect.
Theorem 4.4 in [9] claimed that, if in Theorem 5.13 of the present paper, we replace “super-

strong embeddings having arbitrarily large targets” with embeddings j : Vα → Vη ∈ Eext
κ for which

α is an arbitrarily large inaccessible, then the conclusion of Theorem 5.13 will hold for Eext
κ . How-

ever, this replacement is not sufficient for the proof to go through. Indeed, conditions (1) and (2)
would guarantee that for each such j : Vα → Vη,

(8.2) {α < κ : f |\ α is Eext
α -Laver} ∈ D,

where D is the normal ultrafilter over κ derived from j; clearly this would imply that κ is the κth
extendible cardinal, a conclusion that is too strong to be obtained from the hypothesis.

Theorem 4.5 in [9] asserted that properties (1) - (3) of Theorem 5.13 must hold in Vη whenever
j : Vα → Vη ∈ Eext

κ is such that Vκ ≺ Vα and α is inaccessible. Again this is impossible because
properties (1) and (2) would again imply (8.2) where D is the normal ultrafilter derived from j,
and the consequences are too strong for the hypothesis.

Nonetheless, the f obtained from CC(t, Eext
κ ) can be shown to be Eext

κ -Laver, assuming only
that κ is extendible, if we make the following slight modification in the definition of f : In the second
clause, we now require that if α is a cardinal but f |\ α is not Eext

α -Laver, then f(α) is defined to
be a set x ∈ Vκ of least possible rank that witnesses this failure. Let us call the function defined in
this way f ′ = f ′

t. Then the following is true:

8.6 Theorem. Suppose κ is extendible. Then for any choice of the parameter t, the function f ′

is Eext
κ -Laver at κ.

Proof. The idea of the proof is basically the same as the proof of Theorem 8.5; we give an outline.
Assume x0, λ0 witness that f ′ is not Eext

κ -Laver. Pick an inaccessible α so that x0, λ0 ∈ Vα and
Vκ ≺ Vα, and pick any j : Vα → Vη ∈ Eext

κ . If D is the normal ultrafilter over κ derived from j,
either S1 ∈ D or S2 ∈ D where

S1 = {α < κ : “f ′ |\ α is Eext
α -Laver at α”};

S2 = {α < κ : ∃λφ(f ′ |\ α, f ′(α), λ)}.
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Reasoning as in Theorem 8.5, one shows S1 ∈ D. Assuming S2 ∈ D, we have that for some
λ1 < j(κ),

(8.3) Vη |= φ(f ′, j(f ′)(κ), λ1).

Let x1 = j(f ′)(κ). As in Theorem 8.5, rank(x1) < α, so, as in that proof, we can use j |\ Vβ as a
counterexample to (8.3), giving the desired contradiction.
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